scholarly journals A Bayesian sequential test for the drift of a fractional Brownian motion

2020 ◽  
Vol 52 (4) ◽  
pp. 1308-1324
Author(s):  
Alexey Muravlev ◽  
Mikhail Zhitlukhin

AbstractWe consider a fractional Brownian motion with linear drift such that its unknown drift coefficient has a prior normal distribution and construct a sequential test for the hypothesis that the drift is positive versus the alternative that it is negative. We show that the problem of constructing the test reduces to an optimal stopping problem for a standard Brownian motion obtained by a transformation of the fractional Brownian motion. The solution is described as the first exit time from some set, and it is shown that its boundaries satisfy a certain integral equation, which is solved numerically.

2019 ◽  
Vol 64 (3) ◽  
pp. 610-620
Author(s):  
Frank Aurzada ◽  
Frank Aurzada ◽  
Михаил Анатольевич Лифшиц ◽  
Mikhail Anatolievich Lifshits

Изучается момент первого выхода многомерного дробного броуновского движения из неограниченных областей. В частности, исследуется верхний хвост соответствующего распределения в случае, когда область имеет форму параболы.


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2014 ◽  
Vol 51 (4) ◽  
pp. 898-909
Author(s):  
Moritz Duembgen ◽  
L. C. G. Rogers

In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.


1983 ◽  
Vol 15 (02) ◽  
pp. 225-254 ◽  
Author(s):  
Ioannis Karatzas

We consider the problem of tracking a Brownian motion by a process of bounded variation, in such a way as to minimize total expected cost of both ‘action' and ‘deviation from a target state 0'. The former is proportional to the amount of control exerted to date, while the latter is being measured by a function which can be viewed, for simplicity, as quadratic. We discuss the discounted, stationary and finite-horizon variants of the problem. The answer to all three questions takes the form of exerting control in asingularmanner, in order not to exit from a certain region. Explicit solutions are found for the first and second questions, while the third is reduced to an appropriate optimal stopping problem. This reduction yields properties, as well as global upper and lower bounds, for the associated moving boundary. The pertinent Abelian and ergodic relationships for the corresponding value functions are also derived.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Lin Xu ◽  
Dongjin Zhu

This paper focuses on the first exit time for a Brownian motion with a double linear time-dependent barrier specified by y=a+bt, y=ct, (a>0, b<0, c>0). We are concerned in this paper with the distribution of the Brownian motion hitting the upper barrier before hitting the lower linear barrier. The main method we applied here is the Girsanov transform formula. As a result, we expressed the density of such exit time in terms of a finite series. This result principally provides us an analytical expression for the distribution of the aforementioned exit time and an easy way to compute the distribution of first exit time numerically.


Sign in / Sign up

Export Citation Format

Share Document