sequential test
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 31 (1) ◽  
pp. 1-50
Author(s):  
Jianyi Zhou ◽  
Junjie Chen ◽  
Dan Hao

Although regression testing is important to guarantee the software quality in software evolution, it suffers from the widely known cost problem. To address this problem, existing researchers made dedicated efforts on test prioritization, which optimizes the execution order of tests to detect faults earlier; while practitioners in industry leveraged more computing resources to save the time cost of regression testing. By combining these two orthogonal solutions, in this article, we define the problem of parallel test prioritization, which is to conduct test prioritization in the scenario of parallel test execution to reduce the cost of regression testing. Different from traditional sequential test prioritization, parallel test prioritization aims at generating a set of test sequences, each of which is allocated in an individual computing resource and executed in parallel. In particular, we propose eight parallel test prioritization techniques by adapting the existing four sequential test prioritization techniques, by including and excluding testing time in prioritization. To investigate the performance of the eight parallel test prioritization techniques, we conducted an extensive study on 54 open-source projects and a case study on 16 commercial projects from Baidu , a famous search service provider with 600M monthly active users. According to the two studies, parallel test prioritization does improve the efficiency of regression testing, and cost-aware additional parallel test prioritization technique significantly outperforms the other techniques, indicating that this technique is a good choice for practical parallel testing. Besides, we also investigated the influence of two external factors, the number of computing resources and time allowed for parallel testing, and find that more computing resources indeed improve the performance of parallel test prioritization. In addition, we investigated the influence of two more factors, test granularity and coverage criterion, and find that parallel test prioritization can still accelerate regression testing in parallel scenario. Moreover, we investigated the benefit of parallel test prioritization on the regression testing process of continuous integration, considering both the cumulative acceleration performance and the overhead of prioritization techniques, and the results demonstrate the superiority of parallel test prioritization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paolo Braca ◽  
Domenico Gaglione ◽  
Stefano Marano ◽  
Leonardo M. Millefiori ◽  
Peter Willett ◽  
...  

AbstractDuring the course of an epidemic, one of the most challenging tasks for authorities is to decide what kind of restrictive measures to introduce and when these should be enforced. In order to take informed decisions in a fully rational manner, the onset of a critical regime, characterized by an exponential growth of the contagion, must be identified as quickly as possible. Providing rigorous quantitative tools to detect such an onset represents an important contribution from the scientific community to proactively support the political decision makers. In this paper, leveraging the quickest detection theory, we propose a mathematical model of the COVID-19 pandemic evolution and develop decision tools to rapidly detect the passage from a controlled regime to a critical one. A new sequential test—referred to as MAST (mean-agnostic sequential test)—is presented, and demonstrated on publicly available COVID-19 infection data from different countries. Then, the performance of MAST is investigated for the second pandemic wave, showing an effective trade-off between average decision delay $$\Delta$$ Δ and risk $$R$$ R , where $$R$$ R is inversely proportional to the time required to declare the need to take unnecessary restrictive measures. To quantify risk, in this paper we adopt as its proxy the average occurrence rate of false alarms, in that a false alarm risks unnecessary social and economic disruption. Ideally, the decision mechanism should react as quick as possible for a given level of risk. We find that all the countries share the same behaviour in terms of quickest detection, specifically the risk scales exponentially with the delay, $$R \sim \exp {(-\omega \Delta )}$$ R ∼ exp ( - ω Δ ) , where $$\omega$$ ω depends on the specific nation. For a reasonably small risk level, say, one possibility in ten thousand (i.e., unmotivated implementation of countermeasures every 27 years, on the average), the proposed algorithm detects the onset of the critical regime with delay between a few days to 3 weeks, much earlier than when the exponential growth becomes evident. Strictly from the quickest-detection perspective adopted in this paper, it turns out that countermeasures against the second epidemic wave have not always been taken in a timely manner. The developed tool can be used to support decisions at different geographic scales (regions, cities, local areas, etc.), levels of risk, instantiations of controlled/critical regime, and is general enough to be applied to different pandemic time-series. Additional analysis and applications of MAST are made available on a dedicated website.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
A.S. Al-Moisheer

Testing the number of components in a finite mixture is considered one of the challenging problems. In this paper, exponential finite mixtures are used to determine the number of components in a finite mixture. A sequential testing procedure is adopted based on the likelihood ratio test (LRT) statistic. The distribution of the test statistic under the null hypothesis is obtained using a resampling technique based on B bootstrap samples. The quantiles of the distribution of the test statistic are evaluated from the B bootstrap samples. The performance of the test is examined through the empirical power and application on two real datasets. The proposed procedure is not only used for testing the number of components but also for estimating the optimal number of components in a finite exponential mixture distribution. The innovation of this paper is the sequential test, which tests the more general hypothesis of a finite exponential mixture of k components versus a mixture of k + 1 components. The special case of testing an exponential mixture of one component versus two components is the one commonly used in the literature.


2020 ◽  
Vol 52 (4) ◽  
pp. 1308-1324
Author(s):  
Alexey Muravlev ◽  
Mikhail Zhitlukhin

AbstractWe consider a fractional Brownian motion with linear drift such that its unknown drift coefficient has a prior normal distribution and construct a sequential test for the hypothesis that the drift is positive versus the alternative that it is negative. We show that the problem of constructing the test reduces to an optimal stopping problem for a standard Brownian motion obtained by a transformation of the fractional Brownian motion. The solution is described as the first exit time from some set, and it is shown that its boundaries satisfy a certain integral equation, which is solved numerically.


Sign in / Sign up

Export Citation Format

Share Document