scholarly journals A mathematical theory of compressed video buffering: Traffic regulation for end-to-end video network QoS

Author(s):  
Sherman Xuemin Chen ◽  
Gordon Yong Li

The recent successes of over-the-top (OTT) video services have intensified the competition between the traditional broadcasting video and OTT video. Such competition has pushed the traditional video service providers to accelerate the transition of their video services from the broadcasting video to the carrier-grade IP video streaming. However, there are significant challenges in providing large-scale carrier-grade IP video streaming services. For a compressed video sequence, central to the guaranteed real-time delivery are the issues of video rate, buffering, and timing as compressed video pictures are transmitted over an IP network from the encoder output to the decoder input. Toward the understanding and eventual resolution of these issues, a mathematical theory of compressed video buffering is developed to address IP video traffic regulation for the end-to-end video network quality of service. In particular, a comprehensive set of theoretical relationships is established for decoder buffer size, network transmission rate, network delay and jitter, and video source characteristics. As an example, the theory is applied to measure and compare the burstiness and delay of video streams coded with MPEG-2, advanced video coding, and high-efficiency video coding standards. The applicability of the theory to IP networks that consist of a specific class of routers is also demonstrated.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Laith Al-Jobouri ◽  
Martin Fleury ◽  
Mohammed Ghanbari

Broadband wireless technology, though aimed at video services, also poses a potential threat to video services, as wireless channels are prone to error bursts. In this paper, an adaptive, application-layer Forward Error Correction (FEC) scheme protects H.264/AVC data-partitioned video. Data partitioning is the division of a compressed video stream into partitions of differing decoding importance. The paper determines whether equal error protection (EEP) through FEC of all partition types or unequal error protection (UEP) of the more important partition type is preferable. The paper finds that, though UEP offers a small reduction in bitrate, if EEP is employed, there are significant gains (several dBs) in video quality. Overhead from using EEP rather than UEP was found to be around 1% of the overall bitrate. Given that data partitioning already reduces errors through packet size reduction and differentiation of coding data, EEP with data partitioning is a practical means of protecting user-based video streaming. The gain from employing EEP is shown to be higher quality video to the user, which will result in a greater take-up of video services. The results have implications for other forms of prioritized video streaming.


2009 ◽  
Vol 55 (3) ◽  
pp. 1606-1613 ◽  
Author(s):  
Chun-Su Park ◽  
Hyeong-Min Nam ◽  
Seung-Won Jung ◽  
Seung-Jin Baek ◽  
Sung-Jea Ko

2021 ◽  
Vol 2021 (1) ◽  
pp. 9-17
Author(s):  
Thibaud Biatek ◽  
Mohsen Abdoli ◽  
Mickael Raulet ◽  
Adam Wieckowski ◽  
Christian Lehman ◽  
...  

In the past few decades, the video broadcast ecosystem has gone through major changes; Originally transmitted using analog signals, it has been more and more transitioned toward digital, leveraging compression technologies and transport protocols, principally developed by MPEG. Along this way, the introduction of new video formats was achieved with standardization of new compression technologies for their better bandwidth preservation. Notably, SD with MPEG-2, HD with H.264, 4K/UHD with HEVC. In Brazil, the successive generations of digital broadcasting systems were developed by the SBTVD Forum, from TV-1.0 to TV-3.0 nowadays. The ambition of TV-3.0 is significantly higher than that of previous generations as it targets the delivery of IPbased signals for applications, such as 8K, HDR, virtual and augmented reality. To deliver such services, compressed video signals shall fit into a limited bandwidth, requiring even more advanced compression technologies. The Versatile Video Coding standard (H.266/VVC), has been finalized by the JVET committee in 2021 and is a relevant candidate to address the TV3.0 requirements. VVC is versatile by nature thanks to its dedicated tools for efficient compression of various formats, from 8K to 360°, and provides around 50% of bitrate saving compared to its predecessor HEVC. This paper presents the VVC-based compression system that has been proposed to the SBTVD call for proposals for TV-3.0. A technical description of VVC and an evaluation of its coding performance is provided. In addition, an end-to-end live transmission chain is demonstrated, supporting 4K real-time encoding and decoding with a low glass-to-glass latency.


2011 ◽  
Vol 60 (1) ◽  
pp. 47-68 ◽  
Author(s):  
Pin-Chuan Liu ◽  
Jenq-Shiou Leu ◽  
Tsung-Chieh Lee ◽  
Tien-Ho Chen ◽  
Yun-Sun Yee ◽  
...  

2021 ◽  
Author(s):  
Joni Rasanen ◽  
Aaro Altonen ◽  
Alexandre Mercat ◽  
Jarno Vanne

Sign in / Sign up

Export Citation Format

Share Document