scholarly journals Filling cages. Reverse mathematics and combinatorial principles

2020 ◽  
Vol 26 (3-4) ◽  
pp. 300-300
Author(s):  
Marta Fiori Carones
2007 ◽  
Vol 72 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Denis R. Hirschfeldt ◽  
Richard A. Shore

AbstractWe investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.


2016 ◽  
Vol 81 (4) ◽  
pp. 1531-1554 ◽  
Author(s):  
WEI WANG

AbstractWe introduce the definability strength of combinatorial principles. In terms of definability strength, a combinatorial principle is strong if solving a corresponding combinatorial problem could help in simplifying the definition of a definable set. We prove that some consequences of Ramsey’s Theorem for colorings of pairs could help in simplifying the definitions of some ${\rm{\Delta }}_2^0$ sets, while some others could not. We also investigate some consequences of Ramsey’s Theorem for colorings of longer tuples. These results of definability strength have some interesting consequences in reverse mathematics, including strengthening of known theorems in a more uniform way and also new theorems.


2016 ◽  
Vol 81 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
DAMIR D. DZHAFAROV

AbstractThis paper is a contribution to the growing investigation of strong reducibilities between ${\rm{\Pi }}_2^1$ statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem for pairs. Among other results, we establish that the principle $SRT_2^2$ is not Weihrauch or strongly computably reducible to $D_{ < \infty }^2$, and that COH is not Weihrauch reducible to $SRT_{ < \infty }^2$, or strongly computably reducible to $SRT_2^2$. The last result also extends a prior result of Dzhafarov [9]. We introduce a number of new techniques for controlling the combinatorial and computability-theoretic properties of the problems and solutions we construct in our arguments.


2014 ◽  
Vol 20 (2) ◽  
pp. 170-200 ◽  
Author(s):  
C. T. CHONG ◽  
WEI LI ◽  
YUE YANG

AbstractWe give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.


2005 ◽  
Vol 11 (3) ◽  
pp. 411-427 ◽  
Author(s):  
Joseph R. Mileti

The connections between mathematical logic and combinatorics have a rich history. This paper focuses on one aspect of this relationship: understanding the strength, measured using the tools of computability theory and reverse mathematics, of various partition theorems. To set the stage, recall two of the most fundamental combinatorial principles, König's Lemma and Ramsey's Theorem. We denote the set of natural numbers by ω and the set of finite sequences of natural numbers by ω<ω. We also identify each n ∈ ω with its set of predecessors, so n = {0, 1, 2, …, n − 1}.


2004 ◽  
Vol 69 (3) ◽  
pp. 683-712 ◽  
Author(s):  
Peter Cholak ◽  
Alberto Marcone ◽  
Reed Solomon

In reverse mathematics, one formalizes theorems of ordinary mathematics in second order arithmetic and attempts to discover which set theoretic axioms are required to prove these theorems. Often, this project involves making choices between classically equivalent definitions for the relevant mathematical concepts. In this paper, we consider a number of equivalent definitions for the notions of well quasi-order and better quasi-order and examine how difficult it is to prove the equivalences of these definitions.As usual in reverse mathematics, we work in the context of subsystems of second order arithmetic and take RCA0 as our base system. RCA0 is the subsystem formed by restricting the comprehension scheme in second order arithmetic to formulas and adding a formula induction scheme for formulas. For the purposes of this paper, we will be concerned with fairly weak extensions of RCA0 (indeed strictly weaker than the subsystem ACA0 which is formed by extending the comprehension scheme in RCA0 to cover all arithmetic formulas) obtained by adjoining certain combinatorial principles to RCA0. Among these, the most widely used in reverse mathematics is Weak König's Lemma; the resulting theory WKL0 is extensively documented in [11] and elsewhere.We give three other combinatorial principles which we use in this paper. In these principles, we use k to denote not only a natural number but also the finite set {0, …, k − 1}.


2020 ◽  
Vol 8 ◽  
Author(s):  
Takayuki Kihara

Abstract In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1825
Author(s):  
Viliam Ďuriš ◽  
Gabriela Pavlovičová ◽  
Dalibor Gonda ◽  
Anna Tirpáková

The presented paper is devoted to an innovative way of teaching mathematics, specifically the subject combinatorics in high schools. This is because combinatorics is closely connected with the beginnings of informatics and several other scientific disciplines such as graph theory and complexity theory. It is important in solving many practical tasks that require the compilation of an object with certain properties, proves the existence or non-existence of some properties, or specifies the number of objects of certain properties. This paper examines the basic combinatorial structures and presents their use and learning using relations through the Placemat method in teaching process. The effectiveness of the presented innovative way of teaching combinatorics was also verified experimentally at a selected high school in the Slovak Republic. Our experiment has confirmed that teaching combinatorics through relationships among talented children in mathematics is more effective than teaching by a standard algorithmic approach.


Sign in / Sign up

Export Citation Format

Share Document