Theoretical Description of the Coulomb Interaction by Padé-Jacobi Approximants

Author(s):  
W. Stolzmann ◽  
T. Blöcker
1994 ◽  
Vol 147 ◽  
pp. 606-611
Author(s):  
W. Stolzmann ◽  
T. Blöcker

AbstractCoulomb interactions for the Free Helmholtz energy and the pressure are studied in a partial new formulation which described more exactly the numerical evaluation of many body theories.


1983 ◽  
Vol 141 (11) ◽  
pp. 552
Author(s):  
D.A. Kirzhnits ◽  
F.M. Pen'kov

2000 ◽  
Vol 627 ◽  
Author(s):  
Prabhu R. Nott ◽  
K. Kesava Rao ◽  
L. Srinivasa Mohan

ABSTRACTThe slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.


2005 ◽  
Vol 64 (3) ◽  
pp. 227-237
Author(s):  
A. V. Zhizhelev ◽  
S. V. Zhilinskii ◽  
A. V. Klyshevskii ◽  
S. A. Golovin

Author(s):  
Р. М. Плекан ◽  
В. Ю. Пойда ◽  
І. В. Хіміч

2016 ◽  
pp. 4024-4028 ◽  
Author(s):  
Sergey I. Pokutnyi ◽  
Wlodzimierz Salejda

The possibility of occurrence of the excitonic  quasimolecule formed of spatially separated electrons and holes in a nanosystem that consists  of  CuO quantum dots synthesized in a silicate glass matrix. It is shown that the major contribution to the excitonic quasimolecule binding energy is made by the energy of the exchange interaction of electrons with holes and this contribution is much more substantial than the contribution of the energy of Coulomb interaction between the electrons and holes.


2013 ◽  
Vol 58 (4) ◽  
pp. 1401-1403 ◽  
Author(s):  
J.A. Bartkowska ◽  
R. Zachariasz ◽  
D. Bochenek ◽  
J. Ilczuk

Abstract In the present work, the magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the multiferroic composite was determined. The research material was ferroelectric-ferromagnetic composite on the based PZT and ferrite. We investigated the temperature dependences of the dielectric permittivity (") for the different frequency of measurement’s field. From the dielectric measurements we determined the temperature of phase transition from ferroelectric to paraelectric phase. For the theoretical description of the temperature dependence of the dielectric constant, the Hamiltonian of Alcantara, Gehring and Janssen was used. To investigate the dielectric properties of the multiferroic composite this Hamiltonian was expressed under the mean-field approximation. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.


Sign in / Sign up

Export Citation Format

Share Document