Relativistic cosmology IV: generalisations of L–T and related geometries

Author(s):  
Jerzy Plebanski ◽  
Andrzej Krasinski
1963 ◽  
Vol 80 (7) ◽  
pp. 391-438 ◽  
Author(s):  
E.M. Lifshitz ◽  
Isaak M. Khalatnikov

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 276
Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.


1964 ◽  
Vol 6 (4) ◽  
pp. 495-522 ◽  
Author(s):  
E M Lifshitz ◽  
I M Khalatnikov

FACETS ◽  
2017 ◽  
Vol 2 (1) ◽  
pp. 286-300 ◽  
Author(s):  
Valerio Faraoni ◽  
Adriana M. Cardini

An ordinary differential equation describing the transverse profiles of U-shaped glacial valleys has two formal analogies, which we explore in detail, bridging these different areas of research. First, an analogy with point particle mechanics completes the description of the solutions. Second, an analogy with the Friedmann equation of relativistic cosmology shows that the analogue of a glacial valley profile is a universe with a future singularity of interest in theoretical models of cosmology. A Big Freeze singularity, which was not previously observed for positive curvature index, is also contained in the dynamics.


2000 ◽  
Vol 15 (06) ◽  
pp. 391-395 ◽  
Author(s):  
A. K. RAYCHAUDHURI

It is shown that if the time-like eigenvector of the Ricci tensor is hypersurface orthogonal so that the space–time allows a foliation into space sections, then the space average of each of the scalars that appears in the Raychaudhuri equation vanishes provided that the strong energy condition holds good. This result is presented in the form of a singularity theorem.


Sign in / Sign up

Export Citation Format

Share Document