Appendix: Fourier series, the discrete Fourier transform and the fast Fourier transform

Author(s):  
Magnus Wangen
2008 ◽  
Vol 3 (4) ◽  
pp. 74-86
Author(s):  
Boris A. Knyazev ◽  
Valeriy S. Cherkasskij

The article is intended to the students, who make their first steps in the application of the Fourier transform to physics problems. We examine several elementary examples from the signal theory and classic optics to show relation between continuous and discrete Fourier transform. Recipes for correct interpretation of the results of FDFT (Fast Discrete Fourier Transform) obtained with the commonly used application programs (Matlab, Mathcad, Mathematica) are given.


2020 ◽  
Vol 149 ◽  
pp. 02010 ◽  
Author(s):  
Mikhail Noskov ◽  
Valeriy Tutatchikov

Currently, digital images in the format Full HD (1920 * 1080 pixels) and 4K (4096 * 3072) are widespread. This article will consider the option of processing a similar image in the frequency domain. As an example, take a snapshot of the earth's surface. The discrete Fourier transform will be computed using a two-dimensional analogue of the Cooley-Tukey algorithm and in a standard way by rows and columns. Let us compare the required number of operations and the results of a numerical experiment. Consider the examples of image filtering.


Sign in / Sign up

Export Citation Format

Share Document