Nucleosynthesis and Chemical Evolution of Galaxies

Author(s):  
Bernard E. J. Pagel
1998 ◽  
Vol 188 ◽  
pp. 304-305
Author(s):  
I. Hatsukade ◽  
J. Ishizaka ◽  
M. Yamauchi ◽  
K. Takagishi

The metal in the intracluster medium (ICM) has been ejected or stripped from galaxies. Thus measurements of the metal distribution and the relative abundance of elements, in particular Si/Fe, are important to study the evolution of galaxies, as well as to study the chemical evolution of the ICM. We present the results from ASCA observations of Abell 496 cluster of galaxies. A496 is a nearby rich cluster with a central cD galaxy. At the redshift z=0.0327 of A496, 1 arcmin is 53kpc, where we assumed H0 = 50kms−1Mpc−1, q0 = 0.5. A496 is known as a cooling flow cluster. Edge and Stewart (1991) obtained the mass flow rate of and the cooling radius of 177 ± 52kpc.


1984 ◽  
Vol 105 ◽  
pp. 541-548 ◽  
Author(s):  
Jean Audouze

The question which has been raised in many chapters of this book is about the existence of constraints on stellar evolution coming from related topics like cosmology or in the case of the present chapter the chemical evolution of the galaxies. As it will be seen in this contribution it seems wiser to consider that chemical evolution of galaxies is indeed related to the problem of stellar evolution discussed here but is not going to provide as many constraints on it as one would expect. The purpose of this presentation is therefore to outline the principal relations between these two fields and to discuss the impact of some recent works on them.


Physics Today ◽  
1998 ◽  
Vol 51 (9) ◽  
pp. 70-71 ◽  
Author(s):  
Bernard E. Pagel ◽  
David Arnett

Sign in / Sign up

Export Citation Format

Share Document