The Astronomy and Astrophysics Review
Latest Publications


TOTAL DOCUMENTS

217
(FIVE YEARS 23)

H-INDEX

79
(FIVE YEARS 8)

Published By Springer-Verlag

1432-0754, 0935-4956

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Paul Shah ◽  
Pablo Lemos ◽  
Ofer Lahav

AbstractSince the expansion of the universe was first established by Edwin Hubble and Georges Lemaître about a century ago, the Hubble constant $$H_0$$ H 0 which measures its rate has been of great interest to astronomers. Besides being interesting in its own right, few properties of the universe can be deduced without it. In the last decade, a significant gap has emerged between different methods of measuring it, some anchored in the nearby universe, others at cosmological distances. The SH0ES team has found $$H_0 = 73.2 \pm 1.3 \; \;\,\hbox {kms}^{-1} \,\hbox {Mpc}^{-1}$$ H 0 = 73.2 ± 1.3 kms - 1 Mpc - 1 locally, whereas the value found for the early universe by the Planck Collaboration is $$H_0 = 67.4 \pm 0.5 \; \;\,\hbox {kms}^{-1} \,\hbox {Mpc}^{-1}$$ H 0 = 67.4 ± 0.5 kms - 1 Mpc - 1 from measurements of the cosmic microwave background. Is this gap a sign that the well-established $${\varLambda} {\text{CDM}}$$ Λ CDM cosmological model is somehow incomplete? Or are there unknown systematics? And more practically, how should humble astronomers pick between competing claims if they need to assume a value for a certain purpose? In this article, we review results and what changes to the cosmological model could be needed to accommodate them all. For astronomers in a hurry, we provide a buyer’s guide to the results, and make recommendations.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Jingnan Guo ◽  
Cary Zeitlin ◽  
Robert F. Wimmer-Schweingruber ◽  
Donald M. Hassler ◽  
Bent Ehresmann ◽  
...  

AbstractPotential deleterious health effects to astronauts induced by space radiation is one of the most important long-term risks for human space missions, especially future planetary missions to Mars which require a return-trip duration of about 3 years with current propulsion technology. In preparation for future human exploration, the Radiation Assessment Detector (RAD) was designed to detect and analyze the most biologically hazardous energetic particle radiation on the Martian surface as part of the Mars Science Laboratory (MSL) mission. RAD has measured the deep space radiation field within the spacecraft during the cruise to Mars and the cosmic ray induced energetic particle radiation on Mars since Curiosity’s landing in August 2012. These first-ever surface radiation data have been continuously providing a unique and direct assessment of the radiation environment on Mars. We analyze the temporal variation of the Galactic Cosmic Ray (GCR) radiation and the observed Solar Energetic Particle (SEP) events measured by RAD from the launch of MSL until December 2020, i.e., from the pre-maximum of solar cycle 24 throughout its solar minimum until the initial year of Cycle 25. Over the long term, the Mars’s surface GCR radiation increased by about 50% due to the declining solar activity and the weakening heliospheric magnetic field. At different time scales in a shorter term, RAD also detected dynamic variations in the radiation field on Mars. We present and quantify the temporal changes of the radiation field which are mainly caused by: (a) heliospheric influences which include both temporary impacts by solar transients and the long-term solar cycle evolution, (b) atmospheric changes which include the Martian daily thermal tide and seasonal CO$$_2$$ 2 cycle as well as the altitude change of the rover, (c) topographical changes along the rover path-way causing addition structural shielding and finally (d) solar particle events which occur sporadically and may significantly enhance the radiation within a short time period. Quantification of the variation allows the estimation of the accumulated radiation for a return trip to the surface of Mars under various conditions. The accumulated GCR dose equivalent, via a Hohmann transfer, is about $$0.65 \pm 0.24$$ 0.65 ± 0.24 sievert and $$1.59 \pm 0.12$$ 1.59 ± 0.12 sievert during solar maximum and minimum periods, respectively. The shielding of the GCR radiation by heliospheric magnetic fields during solar maximum periods is rather efficient in reducing the total GCR-induced radiation for a Mars mission, by more than 50%. However, further contributions by SEPs must also be taken into account. In the future, with advanced nuclear thrusters via a fast transfer, we estimate that the total GCR dose equivalent can be reduced to about 0.2 sievert and 0.5 sievert during solar maximum and minimum periods respectively. In addition, we also examined factors which may further reduce the radiation dose in space and on Mars and discuss the many uncertainties in the interpreting the biological effect based on the current measurement.


Author(s):  
Elisa G. M. Ferreira

AbstractUltra-light dark matter is a class of dark matter models (DM), where DM is composed by bosons with masses ranging from $$10^{-24}\, \mathrm {eV}< m < \mathrm {eV}$$ 10 - 24 eV < m < eV . These models have been receiving a lot of attention in the past few years given their interesting property of forming a Bose–Einstein condensate (BEC) or a superfluid on galactic scales. BEC and superfluidity are some of the most striking quantum mechanical phenomena that manifest on macroscopic scales, and upon condensation, the particles behave as a single coherent state, described by the wavefunction of the condensate. The idea is that condensation takes place inside galaxies while outside, on large scales, it recovers the successes of $$\varLambda $$ Λ CDM. This wave nature of DM on galactic scales that arise upon condensation can address some of the curiosities of the behaviour of DM on small-scales. There are many models in the literature that describe a DM component that condenses in galaxies. In this review, we are going to describe those models, and classify them into three classes, according to the different non-linear evolution and structures they form in galaxies: the fuzzy dark matter (FDM), the self-interacting fuzzy dark matter (SIFDM), and the DM superfluid. Each of these classes comprises many models, each presenting a similar phenomenology in galaxies. They also include some microscopic models like the axions and axion-like particles. To understand and describe this phenomenology in galaxies, we are going to review the phenomena of BEC and superfluidity that arise in condensed matter physics, and apply this knowledge to DM. We describe how ULDM can potentially reconcile the cold DM picture with the small-scale behaviour. These models present a rich phenomenology that is manifest in different astrophysical consequences. We review here the astrophysical and cosmological tests used to constrain those models, together with new and future observations that promise to test these models in different regimes. For the case of the FDM class, the mass where this model has an interesting phenomenology on small-scales $$ \sim 10^{-22}\, \mathrm {eV}$$ ∼ 10 - 22 eV , is strongly challenged by current observations. The parameter space for the other two classes remains weakly constrained. We finalize by showing some predictions that are a consequence of the wave nature of this component, like the creation of vortices and interference patterns, that could represent a smoking gun in the search of these rich and interesting alternative class of DM models.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
S. Minardi ◽  
R. J. Harris ◽  
L. Labadie

AbstractMuch of the progress in astronomy has been driven by instrumental developments, from the first telescopes to fiber fed spectrographs. In this review, we describe the field of astrophotonics, a combination of photonics and astronomical instrumentation that is gaining importance in the development of current and future instrumentation. We begin with the science cases that have been identified as possibly benefiting from astrophotonic devices. We then discuss devices, methods and developments in the field along with the advantages they provide. We conclude by describing possible future perspectives in the field and their influence on astronomy.


Author(s):  
Francesca Matteucci

AbstractIn this review, I will discuss the comparison between model results and observational data for the Milky Way, the predictive power of such models as well as their limits. Such a comparison, known as Galactic archaeology, allows us to impose constraints on stellar nucleosynthesis and timescales of formation of the various Galactic components (halo, bulge, thick disk and thin disk).


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Aldo Serenelli ◽  
Achim Weiss ◽  
Conny Aerts ◽  
George C. Angelou ◽  
David Baroch ◽  
...  

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Christopher P. O’Dea ◽  
D. J. Saikia
Keyword(s):  

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Miguel Pérez-Torres ◽  
Seppo Mattila ◽  
Almudena Alonso-Herrero ◽  
Susanne Aalto ◽  
Andreas Efstathiou

2020 ◽  
Vol 29 (1) ◽  
Author(s):  
Oleg Kochukhov

AbstractMagnetic fields play a fundamental role for interior and atmospheric properties of M dwarfs and greatly influence terrestrial planets orbiting in the habitable zones of these low-mass stars. Determination of the strength and topology of magnetic fields, both on stellar surfaces and throughout the extended stellar magnetospheres, is a key ingredient for advancing stellar and planetary science. Here, modern methods of magnetic field measurements applied to M-dwarf stars are reviewed, with an emphasis on direct diagnostics based on interpretation of the Zeeman effect signatures in high-resolution intensity and polarisation spectra. Results of the mean field strength measurements derived from Zeeman broadening analyses as well as information on the global magnetic geometries inferred by applying tomographic mapping methods to spectropolarimetric observations are summarised and critically evaluated. The emerging understanding of the complex, multi-scale nature of M-dwarf magnetic fields is discussed in the context of theoretical models of hydromagnetic dynamos and stellar interior structure altered by magnetic fields.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Keiichi Umetsu

AbstractWeak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here, we present a self-contained pedagogical review of cluster–galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with a special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster–galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration–mass relation, the splashback radius, and implications from extensive mass-calibration efforts for cluster cosmology.


Sign in / Sign up

Export Citation Format

Share Document