Least squares and the principle of maximum likelihood

Author(s):  
Les Kirkup
1997 ◽  
Vol 119 (3) ◽  
pp. 428-438 ◽  
Author(s):  
Marc P. Mignolet ◽  
Chung-Chih Lin

The present investigation focused on the estimation of the parameters of a structural model to represent “at best” a set of measurements of the steady state response of a mistuned bladed disk. The applicability of the least squares and maximum likelihood approaches to the identification of the bladed disk model from this data is first investigated. The advantages and drawbacks of these techniques motivate the introduction of a new mixed least squares-maximum likelihood formulation which is shown to recover well the true model parameters from noisy simulated response data.


2009 ◽  
Vol 12 (03) ◽  
pp. 297-317 ◽  
Author(s):  
ANOUAR BEN MABROUK ◽  
HEDI KORTAS ◽  
SAMIR BEN AMMOU

In this paper, fractional integrating dynamics in the return and the volatility series of stock market indices are investigated. The investigation is conducted using wavelet ordinary least squares, wavelet weighted least squares and the approximate Maximum Likelihood estimator. It is shown that the long memory property in stock returns is approximately associated with emerging markets rather than developed ones while strong evidence of long range dependence is found for all volatility series. The relevance of the wavelet-based estimators, especially, the approximate Maximum Likelihood and the weighted least squares techniques is proved in terms of stability and estimation accuracy.


2005 ◽  
Vol 544 (1-2) ◽  
pp. 254-267 ◽  
Author(s):  
M. Schuermans ◽  
I. Markovsky ◽  
Peter D. Wentzell ◽  
S. Van Huffel

2022 ◽  
Vol 7 (2) ◽  
pp. 2820-2839
Author(s):  
Saurabh L. Raikar ◽  
◽  
Dr. Rajesh S. Prabhu Gaonkar ◽  

<abstract> <p>Jaya algorithm is a highly effective recent metaheuristic technique. This article presents a simple, precise, and faster method to estimate stress strength reliability for a two-parameter, Weibull distribution with common scale parameters but different shape parameters. The three most widely used estimation methods, namely the maximum likelihood estimation, least squares, and weighted least squares have been used, and their comparative analysis in estimating reliability has been presented. The simulation studies are carried out with different parameters and sample sizes to validate the proposed methodology. The technique is also applied to real-life data to demonstrate its implementation. The results show that the proposed methodology's reliability estimates are close to the actual values and proceeds closer as the sample size increases for all estimation methods. Jaya algorithm with maximum likelihood estimation outperforms the other methods regarding the bias and mean squared error.</p> </abstract>


1988 ◽  
Vol 25 (3) ◽  
pp. 301-307
Author(s):  
Wilfried R. Vanhonacker

Estimating autoregressive current effects models is not straightforward when observations are aggregated over time. The author evaluates a familiar iterative generalized least squares (IGLS) approach and contrasts it to a maximum likelihood (ML) approach. Analytic and numerical results suggest that (1) IGLS and ML provide good estimates for the response parameters in instances of positive serial correlation, (2) ML provides superior (in mean squared error) estimates for the serial correlation coefficient, and (3) IGLS might have difficulty in deriving parameter estimates in instances of negative serial correlation.


Sign in / Sign up

Export Citation Format

Share Document