scholarly journals 2190 Longitudinal changes in EEG power envelope connectivity are proportional to motor recovery in chronic stroke patients

2018 ◽  
Vol 2 (S1) ◽  
pp. 17-17
Author(s):  
Joseph B. Humphries ◽  
David T. Bundy ◽  
Eric C. Leuthardt ◽  
Thy N. Huskey

OBJECTIVES/SPECIFIC AIMS: The objective of this study is to determine the degree to which the use of a contralesionally-controlled brain-computer interface for stroke rehabilitation drives change in interhemispheric motor cortical activity. METHODS/STUDY POPULATION: Ten chronic stroke patients were trained in the use of a brain-computer interface device for stroke recovery. Patients perform motor imagery to control the opening and closing of a motorized hand orthosis. This device was sent home with patients for 12 weeks, and patients were asked to use the device 1 hour per day, 5 days per week. The Action Research Arm Test (ARAT) was performed at 2-week intervals to assess motor function improvement. Before the active motor imagery task, patients were asked to quietly rest for 90 seconds before the task to calibrate recording equipment. EEG signals were acquired from 2 electrodes—one each centered over left and right primary motor cortex. Signals were preprocessed with a 60 Hz notch filter for environmental noise and referenced to the common average. Power envelopes for 1 Hz frequency bands (1–30 Hz) were calculated through Gabor wavelet convolution. Correlations between electrodes were then calculated for each frequency envelope on the first and last 5 runs, thus generating one correlation value per subject, per run. The chosen runs approximately correspond to the first and last week of device usage. These correlations were Fisher Z-transformed for comparison. The first and last 5 run correlations were averaged separately to estimate baseline and final correlation values. A difference was then calculated between these averages to determine correlation change for each frequency. The relationship between beta-band correlation changes (13–30 Hz) and the change in ARAT score was determined by calculating a Pearson correlation. RESULTS/ANTICIPATED RESULTS: Beta-band inter-electrode correlations tended to decrease more in patients achieving greater motor recovery (Pearson’s r=−0.68, p=0.031). A similar but less dramatic effect was observed with alpha-band (8–12 Hz) correlation changes (Pearson’s r=−0.42, p=0.22). DISCUSSION/SIGNIFICANCE OF IMPACT: The negative correlation between inter-electrode power envelope correlations in the beta frequency band and motor recovery indicates that activity in the motor cortex on each hemisphere may become more independent during recovery. The role of the unaffected hemisphere in stroke recovery is currently under debate; there is conflicting evidence regarding whether it supports or inhibits the lesioned hemisphere. These findings may support the notion of interhemispheric inhibition, as we observe less in common between activity in the 2 hemispheres in patients successfully achieving recovery. Future neuroimaging studies with greater spatial resolution than available with EEG will shed further light on changes in interhemispheric communication that occur during stroke rehabilitation.

Author(s):  
Yu.V. Bushkova ◽  
G.E. Ivanova ◽  
L.V. Stakhovskaya ◽  
A.A. Frolov

Motor recovery of the upper limb is a priority in the neurorehabilitation of stroke patients. Advances in the brain-computer interface (BCI) technology have significantly improved the quality of rehabilitation. The aim of this study was to explore the factors affecting the recovery of the upper limb in stroke patients undergoing BCI-based rehabilitation with the robotic hand. The study recruited 24 patients (14 men and 10 women) aged 51 to 62 years with a solitary supratentorial stroke lesion. The lesion was left-hemispheric in 11 (45.6%) patients and right-hemispheric in 13 (54.4%) patients. Time elapsed from stroke was 4.0 months (3.0; 12.0). The median MoCa score was 25.0 (23.0; 27.0). The rehabilitation course consisted of 9.5 sessions (8.0; 10.0). We established a significant moderate correlation between motor imagery performance (the MIQ-RS score) and the efficacy of patient-BCI interaction. Patients with high MIQ-RS scores (47.5 (32.0; 54.0) achieved a better control of the BCI-driven hand exoskeleton (63.0 (54.0; 67.0), R = 0.67; p < 0.05). Recovery dynamics were more pronounced in patients with high MIQ-RS scores: the median score on the Fugl-Meyer Assessment scale was 14 (8.0; 16.0) points vs 10 (6.0; 13.0) points in patients with low MIQ-RS scores. However, the difference was not significant. Thus, we established a correlation between a patient’s ability for motor imagery (MIQ-RS) and the efficacy of patient-BCI interaction. A larger patient sample might be necessary to assess the effect of these factors on motor recovery dynamics.


2017 ◽  
Vol 27 (1) ◽  
pp. 107-137 ◽  
Author(s):  
A. A. Frolov ◽  
Dušan Húsek ◽  
E. V. Biryukova ◽  
P. D. Bobrov ◽  
O. A. Mokienko ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi-Qian Hu ◽  
Tian-Hao Gao ◽  
Jie Li ◽  
Jia-Chao Tao ◽  
Yu-Long Bai ◽  
...  

Background. Recently, the brain-computer interface (BCI) has seen rapid development, which may promote the recovery of motor function in chronic stroke patients. Methods. Twelve stroke patients with severe upper limb and hand motor impairment were enrolled and randomly assigned into two groups: motor imagery (MI)-based BCI training with multimodal feedback (BCI group, n = 7) and classical motor imagery training (control group, n = 5). Motor function and electrophysiology were evaluated before and after the intervention. The Fugl-Meyer assessment-upper extremity (FMA-UE) is the primary outcome measure. Secondary outcome measures include an increase in wrist active extension or surface electromyography (the amplitude and cocontraction of extensor carpi radialis during movement), the action research arm test (ARAT), the motor status scale (MSS), and Barthel index (BI). Time-frequency analysis and power spectral analysis were used to reflect the electroencephalogram (EEG) change before and after the intervention. Results. Compared with the baseline, the FMA-UE score increased significantly in the BCI group ( p  = 0.006). MSS scores improved significantly in both groups, while ARAT did not improve significantly. In addition, before the intervention, all patients could not actively extend their wrists or just had muscle contractions. After the intervention, four patients regained the ability to extend their paretic wrists (two in each group). The amplitude and area under the curve of extensor carpi radialis improved to some extent, but there was no statistical significance between the groups. Conclusion. MI-based BCI combined with sensory and visual feedback might improve severe upper limb and hand impairment in chronic stroke patients, showing the potential for application in rehabilitation medicine.


2018 ◽  
Vol 99 (10) ◽  
pp. e36
Author(s):  
Christoph Guger ◽  
Brendan Allison ◽  
Slav H. Dimov ◽  
Edlinger Guenter ◽  
Fan Cao

Sign in / Sign up

Export Citation Format

Share Document