scholarly journals When Design Never Ends - A Future Scenario for Product Developement

Author(s):  
Patrick Pradel ◽  
Robert Ian Campbell ◽  
Richard Bibb

AbstractOne of the foundations of product design is the division between production and design. This division manifests as designers aspiring to create fixed iconic archetypes and production replicates endlessly in thousands or millions. Today innovation and technological change are challenging this idea of product design and manufacturing. The evolution of Rapid Prototyping into Additive Manufacturing (AM), is challenging the notion of mass manufacture and consumer value. As AM advances in capability and capacity, the ability to economically manufacture products in low numbers with high degrees of personalisation poses questions of the accepted product development process. Removing the need for dedicated expensive tooling also eliminates the cyclical timescales and commitment to fixed designs that investment in tooling demands. The ability to alter designs arbitrarily, frequently and responsively means that the traditional design process need not be applied and because of this, design processes and practice might be radically different in the future. In this paper, we explore this possible evolution by drawing parallels with principles and development models found in software development.

Author(s):  
Hugh Jack ◽  
John Farris ◽  
Shabbir Choudhuri ◽  
Princewill Anyalebechi ◽  
Charlie Standridge

A Product Design and Manufacturing (PDM) Engineering emphasis has been designed to update a Manufacturing Engineering program at Grand Valley State University. While the program continues to include a major focus on manufacturing it also emphasizes crossing disciplinary boundaries for product design. Graduates of the program are educated to work in all phases of the product development process from concept to customer. The program includes a blend of courses from a variety of disciplines, tieing these together using a sequence of product design courses. Within the courses students are exposed to course work that encourages product oriented design including prototyping. The program redesign described in the paper could also be applied to Mechanical Engineering programs.


Author(s):  
Sándor Vajna ◽  
Tibor Bercsey ◽  
Steffen Clement ◽  
Peter Mack

Abstract Based on an analysis of the product development process and the study of relevant product development models, the paper presents a new approach aiming at modeling and supporting the design activity as the substantial activity within the product development process. The Autogenetic Design Theory is an approach advancing general design theories. It facilitates the integration of intuition, creativity and artificial intelligence into the conventional design process. To this end, a phase-like allocation of the design process is assumed as the essential structure and an evolutionary algorithm is integrated as the core facilitating purposeful searching and combining. Hence, the flow of the design process can be influenced as all requirements can be included and, on the other hand, intuition and creativity are ensured through the evolutionary algorithm.


Author(s):  
Kuang-Hua Chang ◽  
Javier Silva ◽  
Ira Bryant

Abstract Conventional product development process employs a design-build-break philosophy. The sequentially executed product development process often results in a prolonged lead-time and an elevated product cost. The proposed concurrent design and manufacturing (CDM) process employs physics-based computational methods together with computer graphics technique for product design. This proposed approach employs Virtual Prototyping (VP) technology to support a cross-functional team analyzing product performance, reliability, and manufacturing cost early in the product development stage; and conducting quantitative trade-off for design decision making. Physical prototypes of the product design are then produced using Rapid Prototyping (RP) technique primarily for design verification purposes. The proposed CDM approach holds potential for shortening the overall product development cycle, improving product quality, and reducing product cost. A software tool environment that supports CDM for mechanical systems is being built at the Concurrent Design and Manufacturing Research Laboratory (http://cdm.ou.edu) at the University of Oklahoma. A snap shot of the environment is illustrated using a two-stroke engine example. This paper presents three unique concepts and methods for product development: (i) bringing product performance, quality, and manufacturing cost together in early design stage for design considerations, (ii) supporting design decision-making through a quantitative approach, and (iii) incorporating rapid prototyping for design verification through physical prototypes.


Author(s):  
Gregory M. Roach ◽  
Jordan J. Cox ◽  
Jared M. Young

A major challenge in industry today is to reduce the cost and cycle time in product development while maintaining enough flexibility to adapt to changing markets. Businesses are requiring more and more flexibility in order to produce custom goods at low cost. A new strategy called the Product Design Generator is presented to provide flexible product platforms through an automated design process where product variation is built into the product development process and is achieved through scalable and in some instances modular parametric models for a given product platform embodiment. A case study of web-based Product Design Generator is presented. The axial turbine disk Product Design Generator demonstrated cycle time reduction from 500 man hours to 15 minutes. This new product development strategy has demonstrated the potential to provide engineers the ability to study more potential design solutions, reduce the number of opportunities to introduce error in the product development process, and allows companies to apply a consistent design process across the organization.


Author(s):  
Marco Rossoni ◽  
Giorgio Colombo ◽  
Luca Bergonzi

Current trends in product development process highlight the increasing adoption of digital data and virtual processes. Nowadays, a huge amount of product data are collected without a clear management strategy and, oftentimes, they dont even cover the whole product development process. A global and integrated planning about information needed to sustain product design process is not a trivial task and, usually, companies underrates this issue. From the perspective of virtualization of processes, and then their automation, the lack of structured knowledge is certainly awful. This paper aims at making a critical analysis how product data evolve throughout the product design or configuration process and how they impact the product development activities. Efficient digital product twin allows companies to virtualize processes and leverage their automation, but it is important to understand how the knowledge management should be carried out. Three case studies, directly experienced by the authors, have been investigated analyzing digital data and virtual tools that allow companies to automate the design process, each one bringing a peculiar perspective of the problem.


Author(s):  
Hugh E. McLoone

Creativity can be viewed as a chaotic or unplanned activity. The product design process often may seem like chaos as well, but this is not inevitable. Designers and human factors/ergonomics (HF/E) professionals follow a clear design process with phases, levels, and methods for creation of successful new products. Research methods are offered at the right time during this process to generate new concepts and to evaluate designs. We work together to create innovative, valued, and successful products via a generative, iterative, evaluative process.


2015 ◽  
Vol 740 ◽  
pp. 957-960
Author(s):  
Xiao Ling Yin ◽  
Bo Yang ◽  
Hai Tao Li

To take a wonderful understanding of design process, a modeling method based on colored hierarchical timed Petri nets and a model for a typical process of product design using this method are introduced. Then, aiming at some key issues, the model are simulated by CPN Tools and the results are shown in the paper according to which some convictive conclusions are drawn which indicates the method introduced is valid and reasonable.


Author(s):  
Andrea CAPRA ◽  
Ana BERGER ◽  
Daniela SZABLUK ◽  
Manuela OLIVEIRA

An accurate understanding of users' needs is essential for the development of innovative products. This article presents an exploratory method of user centered research in the context of the design process of technological products, conceived from the demands of a large information technology company. The method is oriented - but not restricted - to the initial stages of the product development process, and uses low-resolution prototypes and simulations of interactions, allowing users to imagine themselves in a future context through fictitious environments and scenarios in the ambit of ideation. The method is effective in identifying the requirements of the experience related to the product’s usage and allows rapid iteration on existing assumptions and greater exploration of design concepts that emerge throughout the investigation.


2014 ◽  
Vol 1061-1062 ◽  
pp. 1233-1237 ◽  
Author(s):  
Pâmela Teixeira Fernandes ◽  
Osíris Canciglieri ◽  
Ângelo Márcio Oliveira Sant’Anna

This paper presents the findings of research exploring how designers could to evaluate and insert sustainability requirements in product design during the initial stages of the product development process. It describes the process of development of the method for sustainability consumable goods based from a literature review and explores its application in the development of packaging for cosmetic. The results show that the use of the method may be a promising solution for sustainable projects, providing the insertion of the reasoning for the inclusion of product development oriented to sustainability as a complement to traditional project requirements that existing in the models of product development.


Sign in / Sign up

Export Citation Format

Share Document