scholarly journals Roots, Schottky semigroups, and a proof of Bandt’s conjecture

2016 ◽  
Vol 37 (8) ◽  
pp. 2487-2555 ◽  
Author(s):  
DANNY CALEGARI ◽  
SARAH KOCH ◽  
ALDEN WALKER

In 1985, Barnsley and Harrington defined a ‘Mandelbrot Set’${\mathcal{M}}$for pairs of similarities: this is the set of complex numbers$z$with$0<|z|<1$for which the limit set of the semigroup generated by the similarities$$\begin{eqnarray}x\mapsto zx\quad \text{and}\quad x\mapsto z(x-1)+1\end{eqnarray}$$is connected. Equivalently,${\mathcal{M}}$is the closure of the set of roots of polynomials with coefficients in$\{-1,0,1\}$. Barnsley and Harrington already noted the (numerically apparent) existence of infinitely many small ‘holes’ in${\mathcal{M}}$, and conjectured that these holes were genuine. These holes are very interesting, since they are ‘exotic’ components of the space of (2-generator) Schottky semigroups. The existence of at least one hole was rigorously confirmed by Bandt in 2002, and he conjectured that the interior points are dense away from the real axis. We introduce the technique oftrapsto construct and certify interior points of${\mathcal{M}}$, and use them to prove Bandt’s conjecture. Furthermore, our techniques let us certify the existence of infinitely many holes in${\mathcal{M}}$.

1953 ◽  
Vol 5 ◽  
pp. 101-103 ◽  
Author(s):  
G. M. Ewing ◽  
W. R. Utz

In this note the authors find all continuous real functions defined on the real axis and such that for an integer n > 2, and for each x,


1922 ◽  
Vol 41 ◽  
pp. 82-93
Author(s):  
T. M. MacRobert

Associated Legendre Functions as Integrals involving Bessel Functions. Let,where C denotes a contour which begins at −∞ on the real axis, passes positively round the origin, and returns to −∞, amp λ=−π initially, and R(z)>0, z being finite and ≠1. [If R(z)>0 and z is finite, then R(z±)>0.] Then if I−m (λ) be expanded in ascending powers of λ, and if the resulting expression be integrated term by term, it is found that


1959 ◽  
Vol 1 (1) ◽  
pp. 95-98
Author(s):  
James L. Griffith

1. One of the best known theorems on the finite Fourier transform is:—The integral function F(z) is of the exponential type C and belongs to L2 on the real axis, if and only if, there exists an f(x) belonging to L2 (—C, C) such that ( Additionally, if f(x) vanishes almost everywhere in a neighbourhood of C and also in a neighbourhood of —C, then F(z) is of an exponential type lower than C.


1954 ◽  
Vol 50 (2) ◽  
pp. 261-265
Author(s):  
F. Huckemann

1. The conformal mapping of a strip domain in the z-plane on to a parallel strip— parallel, say, to the real axis of the ζ ( = ξ + iμ)-plane—brings about a certain distortion. More precisely: consider a cross-cut on the line ℜz = c joining the two sides of the frontier of the strip domain (in these introductory remarks we suppose for simplicity that there is only one such cross-cut on that line), and denote by ξ1(c) and ξ2(c) the lower and upper bounds of ξ on the image in the ζ-plane. The theorem of Ahlfors (1), now classical, states thatprovided thatwhere a is the width of the parallel strip and θ(c) the length of the cross-cut.


1942 ◽  
Vol 38 (4) ◽  
pp. 364-367 ◽  
Author(s):  
A. Erdélyi

1. In this paper I shall deal with the solutions of the Lamé equationwhen n and h are arbitrary complex or real parameters and k is any number in the complex plane cut along the real axis from 1 to ∞ and from −1 to −∞. Since the coefficients of (1) are periodic functions of am(x, k), we conclude ](5), § 19·4] that there is a solution of (1), y0(x), which has a trigonometric expansion of the formwhere θ is a certain constant, the characteristic exponent, which depends on h, k and n. Unless θ is an integer, y0(x) and y0(−x) are two distinct solutions of the Lamé equation.It is easy to obtain the system of recurrence relationsfor the coefficients cr. θ is determined, mod 1, by the condition that this system of recurrence relations should have a solution {cr} for whichk′ being the principal value of (1−k2)½


1991 ◽  
Vol 43 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Clément Frappier

We adopt the terminology and notations of [5]. If f ∈ Bτ is an entire function of exponential type τ bounded on the real axis then we have the complementary interpolation formulas [1, p. 142-143] andwhere t, γ are reals and


1985 ◽  
Vol 97 (3) ◽  
pp. 381-384 ◽  
Author(s):  
Dieter Klusch

1. Letand denote by Aδ the class of functions f analytic in the strip Sδ = {z = x + iy| |y| < δ}, real on the real axis, and satisfying |Ref(z)| ≤ 1,z∊Sδ. Then N.I. Achieser ([1], pp. 214–219; [8], pp. 137–8, 149) proved that each f∊Aδ can be uniformly approximated on the whole real axis by an entire function fc of exponential type at most c with an errorwhere ∥·∥∞ is the sup norm on ℝ. Furthermore ([7], pp. 196–201), if f∊Aδ is 2π-periodic, then the uniform approximation Ẽn (Aδ) of the class Aδ by trigonometric polynomials of degree at most n is given by


1993 ◽  
Vol 47 (2) ◽  
pp. 307-319 ◽  
Author(s):  
Ali E. Özlük ◽  
C. Snyder

We study the distribution of the imaginary parts of zeros near the real axis of quadratic L-functions. More precisely, let K(s) be chosen so that |K(1/2 ± it)| is rapidly decreasing as t increases. We investigate the asymptotic behaviour ofas D → ∞. Here denotes the sum over the non-trivial zeros p = 1/2 + iγ of the Dirichlet L-function L(s, χd), and χd = () is the Kronecker symbol. The outer sum is over all fundamental discriminants d that are in absolute value ≤ D. Assuming the Generalized Riemann Hypothesis, we show that for


1958 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
Jane A. C. Burlak ◽  
R. A. Rankin ◽  
A. P. Robertson

A point x in the real or complex space lpis an infinite sequence,(x1, x2, x3,…) of real or complex numbers such that is convergent. Here p ≥ 1 and we writeThe unit sphere S consists of all points x ε lp for which ¶ x ¶ ≤ 1. The sphere of radius a≥ ≤ 0 and centre y is denoted by Sa(y) and consists of all points x ε lp such that ¶ x - y ¶ ≤ a. The sphere Sa(y) is contained in S if and only if ¶ y ¶≤1 - a, and the two spheres Sa(y) and Sa(z) do not overlap if and only if¶ y- z ¶≥ 2aThe statement that a finite or infinite number of spheres Sa (y) of fixed radius a can be packed in S means that each sphere Sa (y) is contained in S and that no two such spheres overlap.


1984 ◽  
Vol 27 (4) ◽  
pp. 463-471 ◽  
Author(s):  
Clément Frappier

AbstractBernstein's inequality says that if f is an entire function of exponential type τ which is bounded on the real axis thenGenchev has proved that if, in addition, hf (π/2) ≤0, where hf is the indicator function of f, thenUsing a method of approximation due to Lewitan, in a form given by Hörmander, we obtain, to begin, a generalization and a refinement of Genchev's result. Also, we extend to entire functions of exponential type two results first proved for polynomials by Rahman. Finally, we generalize a theorem of Boas concerning trigonometric polynomials vanishing at the origin.


Sign in / Sign up

Export Citation Format

Share Document