Continuous Solutions of the Functional Equation fn(x) = f(x)

1953 ◽  
Vol 5 ◽  
pp. 101-103 ◽  
Author(s):  
G. M. Ewing ◽  
W. R. Utz

In this note the authors find all continuous real functions defined on the real axis and such that for an integer n > 2, and for each x,

1969 ◽  
Vol 12 (6) ◽  
pp. 837-846 ◽  
Author(s):  
John A. Baker

Consider the functional equation(1)assumed valid for all real x, y and h. Notice that (1) can be written(2)a difference analogue of the wave equation, if we interpret etc., (i. e. symmetric h differences), and that (1) has an interesting geometric interpretation. The continuous solutions of (1) were found by Sakovič [5].


1922 ◽  
Vol 41 ◽  
pp. 82-93
Author(s):  
T. M. MacRobert

Associated Legendre Functions as Integrals involving Bessel Functions. Let,where C denotes a contour which begins at −∞ on the real axis, passes positively round the origin, and returns to −∞, amp λ=−π initially, and R(z)>0, z being finite and ≠1. [If R(z)>0 and z is finite, then R(z±)>0.] Then if I−m (λ) be expanded in ascending powers of λ, and if the resulting expression be integrated term by term, it is found that


1985 ◽  
Vol 97 (2) ◽  
pp. 261-278 ◽  
Author(s):  
P. J. McCarthy ◽  
M. Crampin ◽  
W. Stephenson

AbstractThe requirement that the graph of a function be invariant under a linear map is equivalent to a functional equation of f. For area preserving maps M(det (M) = 1), the functional equation is equivalent to an (easily solved) linear one, or to a quadratic one of the formfor all Here 2C = Trace (M). It is shown that (Q) admits continuous solutions ⇔ M has real eigenvalues ⇔ (Q) has linear solutions f(x) = λx ⇔ |C| ≥ 1. For |c| = 1 or C < – 1, (Q) only admits a few simple solutions. For C > 1, (Q) admits a rich supply of continuous solutions. These are parametrised by an arbitrary function, and described in the sense that a construction is given for the graphs of the functions which solve (Q).


1959 ◽  
Vol 1 (1) ◽  
pp. 95-98
Author(s):  
James L. Griffith

1. One of the best known theorems on the finite Fourier transform is:—The integral function F(z) is of the exponential type C and belongs to L2 on the real axis, if and only if, there exists an f(x) belonging to L2 (—C, C) such that ( Additionally, if f(x) vanishes almost everywhere in a neighbourhood of C and also in a neighbourhood of —C, then F(z) is of an exponential type lower than C.


1954 ◽  
Vol 50 (2) ◽  
pp. 261-265
Author(s):  
F. Huckemann

1. The conformal mapping of a strip domain in the z-plane on to a parallel strip— parallel, say, to the real axis of the ζ ( = ξ + iμ)-plane—brings about a certain distortion. More precisely: consider a cross-cut on the line ℜz = c joining the two sides of the frontier of the strip domain (in these introductory remarks we suppose for simplicity that there is only one such cross-cut on that line), and denote by ξ1(c) and ξ2(c) the lower and upper bounds of ξ on the image in the ζ-plane. The theorem of Ahlfors (1), now classical, states thatprovided thatwhere a is the width of the parallel strip and θ(c) the length of the cross-cut.


1942 ◽  
Vol 38 (4) ◽  
pp. 364-367 ◽  
Author(s):  
A. Erdélyi

1. In this paper I shall deal with the solutions of the Lamé equationwhen n and h are arbitrary complex or real parameters and k is any number in the complex plane cut along the real axis from 1 to ∞ and from −1 to −∞. Since the coefficients of (1) are periodic functions of am(x, k), we conclude ](5), § 19·4] that there is a solution of (1), y0(x), which has a trigonometric expansion of the formwhere θ is a certain constant, the characteristic exponent, which depends on h, k and n. Unless θ is an integer, y0(x) and y0(−x) are two distinct solutions of the Lamé equation.It is easy to obtain the system of recurrence relationsfor the coefficients cr. θ is determined, mod 1, by the condition that this system of recurrence relations should have a solution {cr} for whichk′ being the principal value of (1−k2)½


1969 ◽  
Vol 10 (1-2) ◽  
pp. 207-213 ◽  
Author(s):  
E. Seneta

In a recent note, M. Kuczama [5] has obtained a general result concerning real solutions φ(x) on the interval 0 ≦ x < a ≦∞ of the Schröder functional equation providing the known real function satisfies the following (quite weak) conditions: f(x) is continuous and strictly increasing in ([0 a);(0) = 0 and 0 <f(x) <x for x ∈ (0, a); limx→0+ {f(x)/x} = s; and f(x)/x is monotonic in (0, a).


2016 ◽  
Vol 37 (8) ◽  
pp. 2487-2555 ◽  
Author(s):  
DANNY CALEGARI ◽  
SARAH KOCH ◽  
ALDEN WALKER

In 1985, Barnsley and Harrington defined a ‘Mandelbrot Set’${\mathcal{M}}$for pairs of similarities: this is the set of complex numbers$z$with$0<|z|<1$for which the limit set of the semigroup generated by the similarities$$\begin{eqnarray}x\mapsto zx\quad \text{and}\quad x\mapsto z(x-1)+1\end{eqnarray}$$is connected. Equivalently,${\mathcal{M}}$is the closure of the set of roots of polynomials with coefficients in$\{-1,0,1\}$. Barnsley and Harrington already noted the (numerically apparent) existence of infinitely many small ‘holes’ in${\mathcal{M}}$, and conjectured that these holes were genuine. These holes are very interesting, since they are ‘exotic’ components of the space of (2-generator) Schottky semigroups. The existence of at least one hole was rigorously confirmed by Bandt in 2002, and he conjectured that the interior points are dense away from the real axis. We introduce the technique oftrapsto construct and certify interior points of${\mathcal{M}}$, and use them to prove Bandt’s conjecture. Furthermore, our techniques let us certify the existence of infinitely many holes in${\mathcal{M}}$.


2012 ◽  
Vol 85 (2) ◽  
pp. 202-216 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f, g, h are real functions defined on an abelian group G. We solve this equation under the assumptions G=ℝ and f is continuous.


1991 ◽  
Vol 43 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Clément Frappier

We adopt the terminology and notations of [5]. If f ∈ Bτ is an entire function of exponential type τ bounded on the real axis then we have the complementary interpolation formulas [1, p. 142-143] andwhere t, γ are reals and


Sign in / Sign up

Export Citation Format

Share Document