The Pisot conjecture for -substitutions
2016 ◽
Vol 38
(2)
◽
pp. 444-472
◽
Keyword(s):
We prove the Pisot conjecture for$\unicode[STIX]{x1D6FD}$-substitutions: if$\unicode[STIX]{x1D6FD}$is a Pisot number, then the tiling dynamical system$(\unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D713}_{\unicode[STIX]{x1D6FD}}},\mathbb{R})$associated with the$\unicode[STIX]{x1D6FD}$-substitution has pure discrete spectrum. As corollaries: (1) arithmetical coding of the hyperbolic solenoidal automorphism associated with the companion matrix of the minimal polynomial of any Pisot number is almost everywhere one-to-one; and (2) all Pisot numbers are weakly finitary.
Keyword(s):
2002 ◽
Vol 166
◽
pp. 183-207
◽
Keyword(s):
2011 ◽
Vol 54
(1)
◽
pp. 127-132
◽
2009 ◽
Vol 61
(2)
◽
pp. 264-281
◽
Keyword(s):
2015 ◽
Vol 36
(6)
◽
pp. 1757-1794
◽
2013 ◽
Vol 50
(4)
◽
pp. 509-522
◽
2008 ◽
Vol 144
(1)
◽
pp. 29-37
◽
Keyword(s):
2018 ◽
Vol 11
(1)
◽
pp. 260
◽
Keyword(s):
2019 ◽
Vol 41
(2)
◽
pp. 494-533
◽