scholarly journals Limit theorems for some skew products with mixing base maps

2019 ◽  
Vol 41 (1) ◽  
pp. 241-271 ◽  
Author(s):  
YEOR HAFOUTA

We obtain a central limit theorem, local limit theorems and renewal theorems for stationary processes generated by skew product maps $T(\unicode[STIX]{x1D714},x)=(\unicode[STIX]{x1D703}\unicode[STIX]{x1D714},T_{\unicode[STIX]{x1D714}}x)$ together with a $T$-invariant measure whose base map $\unicode[STIX]{x1D703}$ satisfies certain topological and mixing conditions and the maps $T_{\unicode[STIX]{x1D714}}$ on the fibers are certain non-singular distance-expanding maps. Our results hold true when $\unicode[STIX]{x1D703}$ is either a sufficiently fast mixing Markov shift with positive transition densities or a (non-uniform) Young tower with at least one periodic point and polynomial tails. The proofs are based on the random complex Ruelle–Perron–Frobenius theorem from Hafouta and Kifer [Nonconventional Limit Theorems and Random Dynamics. World Scientific, Singapore, 2018] applied with appropriate random transfer operators generated by $T_{\unicode[STIX]{x1D714}}$, together with certain regularity assumptions (as functions of $\unicode[STIX]{x1D714}$) of these operators. Limit theorems for deterministic processes whose distributions on the fibers are generated by Markov chains with transition operators satisfying a random version of the Doeblin condition are also obtained. The main innovation in this paper is that the results hold true even though the spectral theory used in Aimino, Nicol and Vaienti [Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Related Fields162 (2015), 233–274] does not seem to be applicable, and the dual of the Koopman operator of $T$ (with respect to the invariant measure) does not seem to have a spectral gap.

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


2020 ◽  
Vol 30 (4) ◽  
pp. 215-241
Author(s):  
Gavriil A. Bakay ◽  
Aleksandr V. Shklyaev

AbstractLet (ξ(i), η(i)) ∈ ℝd+1, 1 ≤ i < ∞, be independent identically distributed random vectors, η(i) be nonnegative random variables, the vector (ξ(1), η(1)) satisfy the Cramer condition. On the base of renewal process, NT = max{k : η(1) + … + η(k) ≤ T} we define the generalized renewal process ZT = $\begin{array}{} \sum_{i=1}^{N_T} \end{array}$ξ(i). Put IΔT(x) = {y ∈ ℝd : xj ≤ yj < xj + ΔT, j = 1, …, d}. We find asymptotic formulas for the probabilities P(ZT ∈ IΔT(x)) as ΔT → 0 and P(ZT = x) in non-lattice and arithmetic cases, respectively, in a wide range of x values, including normal, moderate, and large deviations. The analogous results were obtained for a process with delay in which the distribution of (ξ(1), η(1)) differs from the distribution on the other steps. Using these results, we prove local limit theorems for processes with regeneration and for additive functionals of finite Markov chains, including normal, moderate, and large deviations.


2021 ◽  
Vol 31 (4) ◽  
pp. 293-307
Author(s):  
Aleksandr N. Timashev

Abstract A generalized scheme of allocation of n particles into ordered cells (components). Some statements containing sufficient conditions for the weak convergence of the number of components with given cardinality and of the total number of components to the negative binomial distribution as n → ∞ are presented as hypotheses. Examples supporting the validity of these statements in particular cases are considered. For some examples we prove local limit theorems for the total number of components which partially generalize known results on the convergence of this distribution to the normal law.


Author(s):  
Martina Dal Borgo ◽  
Pierre-Loïc Méliot ◽  
Ashkan Nikeghbali

Sign in / Sign up

Export Citation Format

Share Document