scholarly journals Partially hyperbolic diffeomorphisms and Lagrangian contact structures

2021 ◽  
pp. 1-47
Author(s):  
MARTIN MION-MOUTON

Abstract In this paper, we classify the three-dimensional partially hyperbolic diffeomorphisms whose stable, unstable, and central distributions $E^s$ , $E^u$ , and $E^c$ are smooth, such that $E^s\oplus E^u$ is a contact distribution, and whose non-wandering set equals the whole manifold. We prove that up to a finite quotient or a finite power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov flow, or to an affine partially hyperbolic automorphism of a nil- ${\mathrm {Heis}}{(3)}$ -manifold. The rigid geometric structure induced by the invariant distributions plays a fundamental part in the proof.

2016 ◽  
Vol 38 (2) ◽  
pp. 401-443 ◽  
Author(s):  
ANDY HAMMERLINDL ◽  
RAFAEL POTRIE

This paper surveys recent results on classifying partially hyperbolic diffeomorphisms. This includes the construction of branching foliations and leaf conjugacies on three-dimensional manifolds with solvable fundamental group. Classification results in higher-dimensional settings are also discussed. The paper concludes with an overview of the construction of new partially hyperbolic examples derived from Anosov flows.


2020 ◽  
pp. 1-12
Author(s):  
PABLO D. CARRASCO ◽  
ENRIQUE PUJALS ◽  
FEDERICO RODRIGUEZ-HERTZ

Abstract Consider a three-dimensional partially hyperbolic diffeomorphism. It is proved that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo finite covers and iterates) an Anosov diffeomorphism, a (generalized) skew-product or the time-one map of an Anosov flow, thus recovering a well-known classification conjecture of the second author to this restricted setting.


2011 ◽  
Vol 32 (2) ◽  
pp. 825-839 ◽  
Author(s):  
F. RODRIGUEZ HERTZ ◽  
M. A. RODRIGUEZ HERTZ ◽  
A. TAHZIBI ◽  
R. URES

AbstractWe obtain the following dichotomy for accessible partially hyperbolic diffeomorphisms of three-dimensional manifolds having compact center leaves: either there is a unique entropy-maximizing measure, this measure has the Bernoulli property and its center Lyapunov exponent is 0, or there are a finite number of entropy-maximizing measures, all of them with non-zero center Lyapunov exponents (at least one with a negative exponent and one with a positive exponent), that are finite extensions of a Bernoulli system. In the first case of the dichotomy, we obtain that the system is topologically conjugated to a rotation extension of a hyperbolic system. This implies that the second case of the dichotomy holds for an open and dense set of diffeomorphisms in the hypothesis of our result. As a consequence, we obtain an open set of topologically mixing diffeomorphisms having more than one entropy-maximizing measure.


2020 ◽  
pp. 1-17
Author(s):  
THOMAS BARTHELMÉ ◽  
SERGIO R. FENLEY ◽  
STEVEN FRANKEL ◽  
RAFAEL POTRIE

Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol., to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint, 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint, 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.


2014 ◽  
Vol 35 (2) ◽  
pp. 412-430 ◽  
Author(s):  
HUYI HU ◽  
YUNHUA ZHOU ◽  
YUJUN ZHU

AbstractA partially hyperbolic diffeomorphism $f$ has the quasi-shadowing property if for any pseudo orbit $\{x_{k}\}_{k\in \mathbb{Z}}$, there is a sequence of points $\{y_{k}\}_{k\in \mathbb{Z}}$ tracing it in which $y_{k+1}$ is obtained from $f(y_{k})$ by a motion ${\it\tau}$ along the center direction. We show that any partially hyperbolic diffeomorphism has the quasi-shadowing property, and if $f$ has a $C^{1}$ center foliation then we can require ${\it\tau}$ to move the points along the center foliation. As applications, we show that any partially hyperbolic diffeomorphism is topologically quasi-stable under $C^{0}$-perturbation. When $f$ has a uniformly compact $C^{1}$ center foliation, we also give partially hyperbolic diffeomorphism versions of some theorems which hold for uniformly hyperbolic systems, such as the Anosov closing lemma, the cloud lemma and the spectral decomposition theorem.


2016 ◽  
Vol 38 (1) ◽  
pp. 384-400 ◽  
Author(s):  
RAÚL URES ◽  
CARLOS H. VÁSQUEZ

It is well known that it is possible to construct a partially hyperbolic diffeomorphism on the 3-torus in a similar way to Kan’s example. It has two hyperbolic physical measures with intermingled basins supported on two embedded tori with Anosov dynamics. A natural question is how robust is the intermingled basin phenomenon for diffeomorphisms defined on boundaryless manifolds? In this work we study partially hyperbolic diffeomorphisms on the 3-torus and show that the intermingled basin phenomenon is not robust.


2008 ◽  
Vol 28 (3) ◽  
pp. 843-862 ◽  
Author(s):  
YONGXIA HUA ◽  
RADU SAGHIN ◽  
ZHIHONG XIA

AbstractWe consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique non-trivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensional, then the topological entropy is locally a constant; and if the center foliation is two-dimensional, then the topological entropy is continuous on the set of all $C^{\infty }$ diffeomorphisms. The proof uses a topological invariant we introduced, Yomdin’s theorem on upper semi-continuity, Katok’s theorem on lower semi-continuity for two-dimensional systems, and a refined Pesin–Ruelle inequality we proved for partially hyperbolic diffeomorphisms.


Sign in / Sign up

Export Citation Format

Share Document