scholarly journals On velocity and reactive scalar spectra in turbulent premixed flames

2014 ◽  
Vol 754 ◽  
pp. 456-487 ◽  
Author(s):  
H. Kolla ◽  
E. R. Hawkes ◽  
A. R. Kerstein ◽  
N. Swaminathan ◽  
J. H. Chen

AbstractKinetic energy and reactive scalar spectra in turbulent premixed flames are studied from compressible three-dimensional direct numerical simulations (DNS) of a temporally evolving rectangular slot-jet premixed flame, a statistically one-dimensional configuration. The flames correspond to a lean premixed hydrogen–air mixture at an equivalence ratio of 0.7, preheated to 700 K and at 1 atm, and three DNS are considered with a fixed jet Reynolds number of 10 000 and a jet Damköhler number varying between 0.13 and 0.54. For the study of spectra, motivated by the need to account for density change, which can be locally strong in premixed flames, a new density-weighted definition for two-point velocity/scalar correlations is proposed. The density-weighted two-point correlation tensor retains the essential properties of its constant-density (incompressible) counterpart and recovers the density-weighted Reynolds stress tensor in the limit of zero separation. The density weighting also allows the derivation of balance equations for velocity and scalar spectrum functions in the wavenumber space that illuminate physics unique to combusting flows. Pressure–dilatation correlation is a source of kinetic energy at high wavenumbers and, analogously, reaction rate–scalar fluctuation correlation is a high-wavenumber source of scalar energy. These results are verified by the spectra constructed from the DNS data. The kinetic energy spectra show a distinct inertial range with a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}-5/3$ scaling followed by a ‘diffusive–reactive’ range at higher wavenumbers. The exponential drop-off in this range shows a distinct inflection in the vicinity of the wavenumber corresponding to a laminar flame thickness, $\delta _L$, and this is attributed to the contribution from the pressure–dilatation term in the energy balance in wavenumber space. Likewise, a clear spike in spectra of major reactant species (hydrogen) arising from the reaction-rate term is observed at wavenumbers close to $\delta _L$. It appears that in the inertial range classical scaling laws for the spectra involving the Kolmogorov scale are applicable, but in the high-wavenumber range where chemical reactions have a strong signature the laminar flame thickness produces a better collapse. It is suggested that a full scaling should perhaps involve the Kolmogorov scale, laminar flame thickness, Damköhler number and Karlovitz number.

Author(s):  
Kazuya Tsuboi ◽  
Shinnosuke Nishiki ◽  
Tatsuya Hasegawa

An analysis of local flame area was performed using DNS (Direct Numerical Simulation) databases of turbulent premixed flames with different density ratios and with different Lewis numbers. Firstly, a local flame surface at a prescribed progress variable was identified as a local three-dimensional polygon. And then the polygon was divided into some triangles and local flame area was evaluated. The turbulent burning velocity was evaluated using the ratio of the area of turbulent flame to that of planar flame and compared with the turbulent burning velocity obtained by the reaction rate.


2018 ◽  
Vol 198 ◽  
pp. 436-454 ◽  
Author(s):  
Song Zhao ◽  
Aimad Er-raiy ◽  
Zakaria Bouali ◽  
Arnaud Mura

2011 ◽  
Vol 681 ◽  
pp. 80-115 ◽  
Author(s):  
N. SWAMINATHAN ◽  
G. XU ◽  
A. P. DOWLING ◽  
R. BALACHANDRAN

The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be used to scale the correlation length scale, which is about a quarter of the planar laminar flame thermal thickness. This correlation and its length scale are observed to be less influenced by the fuel type or stoichiometry or turbulence Reynolds and Damkohler numbers. The time scale for fluctuating heat release rate is deduced to be about τc/34 on an average, where τc is the planar laminar flame time scale, using direct numerical simulation (DNS) data. These results and the spatial distribution of mean reaction rate obtained from Reynolds-averaged Navier–Stokes (RANS) calculations of open turbulent premixed flames employing the standard model and an algebraic reaction rate closure, involving a recently developed scalar dissipation rate model, are used to obtain the far-field sound pressure level from open flames. The calculated values agree well with measured values for flames of different stoichiometry and fuel types, having a range of turbulence intensities and heat output. Detailed analyses of RANS results clearly suggest that the noise level from turbulent premixed flames having an extensive and uniform spatial distribution of heat release rate is low.


Sign in / Sign up

Export Citation Format

Share Document