Eigenvalue sensitivity, singular values and discrete frequency selection mechanism in noise amplifiers: the case of flow induced by radial wall injection

2014 ◽  
Vol 757 ◽  
pp. 770-799 ◽  
Author(s):  
Stéphane Cerqueira ◽  
Denis Sipp

AbstractWe have performed linearized direct numerical simulations (DNS) of flow induced by radial wall injection forced by white-noise Gaussian forcings. We have shown that the frequency spectrum of the flow exhibits low-frequency discrete peaks in the case of a spatial structure of the forcing that is large scale. On the other hand, we observed that the spectrum becomes smooth (with no discrete peaks) if the spatial structure of the forcing is of a smaller extent. We have then tried to analyse these results in the light of global stability analyses. We have first computed the eigenvalue spectrum of the Jacobian and shown that the computed eigenvalues in the frequency range of interest were strongly damped and extremely sensitive to numerical discretization choices if large domains in the axial direction were considered. If shorter domains are used, then the eigenvalues are more robust but still extremely sensitive to the location of the upstream and downstream boundaries. Analysis of the$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\epsilon $-pseudo-spectrum showed that eigenvalues located in a region displaying ‘background’ values of$ \epsilon $below$10^{-12}$were extremely sensitive and confirmed that all values in this region of the spectrum were actually quasi-eigenvalues. The eigenvalues are therefore ill-behaved and cannot be invoked to explain the observed discrete frequency selection mechanism. We have then performed a singular value decomposition of the global resolvent matrix to compute the leading optimal gains, optimal forcings and optimal responses, which are robust quantities, insensitive to numerical discretization details. We showed that the frequency response of the flow with the large-scale forcing can accurately be reproduced by an approximation based on the leading optimal gain/forcing/response. Analysis of this approximation showed that it is the projection coefficient of the forcing onto the leading optimal forcing that is responsible for the discrete frequency selection mechanism in the case of the large-scale forcing. From a more physical point of view, such a discrete behaviour stems from the streamwise oscillations of the leading optimal forcings, whose wavelengths vary with frequency, in combination with finite extent forcings (which start or end at locations where the leading optimal forcings are strong). Experimental results in the literature are finally discussed in light of these findings.


Author(s):  
Zhaoqi Gao ◽  
Zhibin Pan ◽  
Jinghuai Gao ◽  
Ru-Shan Wu




2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.



<i>Abstract</i>.—Large-scale fish tagging programs are becoming more popular as fishery managers realize the importance of including spatial structure in assessment and management models. Two recent EU-funded projects on plaice and cod have shown how information from electronic tags can be used to gain new insights and add value to historic tagging data. Highlights have been the demonstration of unexpected population sub-structuring in plaice, and the realization that cod behavior is very variable in response to regional environments. Success does not come without planning and management of staff, of data, and of expectations. We share our experiences from the last 10 years of electronic tagging to provide an up-to-date analysis of what makes a good tagging program, and how to get the most from it.



2009 ◽  
Vol 74 (3) ◽  
pp. 423-447 ◽  
Author(s):  
Brian S. Robinson ◽  
Jennifer C. Ort ◽  
William A. Eldridge ◽  
Adrian L. Burke ◽  
Bertrand G. Pelletier

Large social aggregations are among the most highly organized events associated with mobile hunter-gatherers. The Bull Brook Paleoindian site in Ipswich, Massachusetts provides the strongest case for large-scale Paleoindian aggregation in North America, with 36 discrete concentrations of artifacts arranged in a large circle. Avocational archaeologists who salvaged the site in the 1950s interpreted it as a single occupation. Professionals first rejected and then revived this hypothesis, but the site remained insufficiently analyzed to evaluate. New research supports the single occupation hypothesis with a fully reconstructed site plan and the first complete analysis of artifact distributions. Clear spatial structure of activities within the ring-shaped site plan provides a window on social contexts that are also visible in smaller Paleoindian settlements.





Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed discs with friction dampers of different design has been developed. The method uses explicit finite element modelling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different design in multiharmonic analysis of bladed discs. Large-scale finite element damper and bladed disc models containing 104–106 DOFs can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modelling of elastic damper bodies and for modelling of friction contact interactions. Numerical studies of realistic bladed discs have been performed with three different types of underplatform dampers: (i) a ‘cottage-roof’ (called also ‘wedge’) damper; (ii) seal wire damper; and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.



2019 ◽  
Vol 23 (2) ◽  
pp. 289-306
Author(s):  
Tao Huo ◽  
Lewei Tong

This study discusses the wind-induced response of existing pitch-controlled 1.25 MW wind turbine structures, with a particular focus on the influence of the blade-rotation effect, cross-wind loads of the tubular tower and the wind direction, and compares numerical responses with the measured dynamic responses. An integrated finite-element model consisting of blades, a nacelle, a tower and a foundation is established. The aerodynamic loads exerted on the rotating blades and the aerodynamic loads acting on the tubular tower are then obtained. A wind-induced response calculation method of the wind turbine structures corresponding to different wind speeds and wind directions is established for performing a wind-induced response analysis. Finally, comparisons between the measured responses and the corresponding numerical response results are performed to verify the accuracy of the proposed wind-induced response calculation method. The results indicate that neglecting the cross-wind aerodynamic loads of large-scale wind turbine structures can lead to unsafe design. The wind direction has different influences on the along-wind and cross-wind dynamic responses. The statistical values of the measured dynamic responses are slightly greater than those of the numerical analysis results, but the magnitudes of the responses are the same. Therefore, the proposed wind-induced response calculation method for wind turbine structures is feasible and reasonable. It can be used to conduct the fatigue life prediction of wind turbine tubular towers in future research which is an important issue in the structural design of wind turbine tubular tower structures.



Sign in / Sign up

Export Citation Format

Share Document