scholarly journals Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow

2014 ◽  
Vol 760 ◽  
pp. 387-406 ◽  
Author(s):  
Jonathan Hagan ◽  
Jānis Priede

AbstractThis study is concerned with the stability of a flow of viscous conducting liquid driven by a pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart – plane Poiseuille flow – is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on two-dimensional nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $\mathit{Re}_{n}=2939$ without the magnetic field and from $\mathit{Re}_{n}\sim 6.50\times 10^{3}\mathit{Ha}$ in a sufficiently strong magnetic field defined by the Hartmann number $\mathit{Ha}$. Although the latter value is a factor of seven lower than the linear stability threshold $\mathit{Re}_{l}\sim 4.83\times 10^{4}\mathit{Ha}$, it is still more than an order of magnitude higher than the experimentally observed value for the onset of turbulence in magnetohydrodynamic (MHD) channel flow.

2010 ◽  
Vol 649 ◽  
pp. 115-134 ◽  
Author(s):  
JĀNIS PRIEDE ◽  
SVETLANA ALEKSANDROVA ◽  
SERGEI MOLOKOV

We analyse numerically the linear stability of the fully developed flow of a liquid metal in a square duct subject to a transverse magnetic field. The walls of the duct perpendicular to the magnetic field are perfectly conducting whereas the parallel ones are insulating. In a sufficiently strong magnetic field, the flow consists of two jets at the insulating walls and a near-stagnant core. We use a vector stream function formulation and Chebyshev collocation method to solve the eigenvalue problem for small-amplitude perturbations. Due to the two-fold reflection symmetry of the base flow the disturbances with four different parity combinations over the duct cross-section decouple from each other. Magnetic field renders the flow in a square duct linearly unstable at the Hartmann number Ha ≈ 5.7 with respect to a disturbance whose vorticity component along the magnetic field is even across the field and odd along it. For this mode, the minimum of the critical Reynolds number Rec ≈ 2018, based on the maximal velocity, is attained at Ha ≈ 10. Further increase of the magnetic field stabilizes this mode with Rec growing approximately as Ha. For Ha > 40, the spanwise parity of the most dangerous disturbance reverses across the magnetic field. At Ha ≈ 46 a new pair of most dangerous disturbances appears with the parity along the magnetic field being opposite to that of the previous two modes. The critical Reynolds number, which is very close for both of these modes, attains a minimum, Rec ≈ 1130, at Ha ≈ 70 and increases as Rec ≈ 91Ha1/2 for Ha ≫ 1. The asymptotics of the critical wavenumber is kc ≈ 0.525Ha1/2 while the critical phase velocity approaches 0.475 of the maximum jet velocity.


2012 ◽  
Vol 708 ◽  
pp. 111-127 ◽  
Author(s):  
Jānis Priede ◽  
Svetlana Aleksandrova ◽  
Sergei Molokov

AbstractWe analyse numerically the linear stability of a liquid-metal flow in a rectangular duct with perfectly electrically conducting walls subject to a uniform transverse magnetic field. A non-standard three-dimensional vector stream-function/vorticity formulation is used with a Chebyshev collocation method to solve the eigenvalue problem for small-amplitude perturbations. A relatively weak magnetic field is found to render the flow linearly unstable as two weak jets appear close to the centre of the duct at the Hartmann number $\mathit{Ha}\approx 9. 6. $ In a sufficiently strong magnetic field, the instability following the jets becomes confined in the layers of characteristic thickness $\delta \ensuremath{\sim} {\mathit{Ha}}^{\ensuremath{-} 1/ 2} $ located at the walls parallel to the magnetic field. In this case the instability is determined by $\delta , $ which results in both the critical Reynolds number and wavenumber scaling as ${\ensuremath{\sim} }{\delta }^{\ensuremath{-} 1} . $ Instability modes can have one of the four different symmetry combinations along and across the magnetic field. The most unstable is a pair of modes with an even distribution of vorticity along the magnetic field. These two modes represent strongly non-uniform vortices aligned with the magnetic field, which rotate either in the same or opposite senses across the magnetic field. The former enhance while the latter weaken one another provided that the magnetic field is not too strong or the walls parallel to the field are not too far apart. In a strong magnetic field, when the vortices at the opposite walls are well separated by the core flow, the critical Reynolds number and wavenumber for both of these instability modes are the same: ${\mathit{Re}}_{c} \approx 642{\mathit{Ha}}^{1/ 2} + 8. 9\ensuremath{\times} 1{0}^{3} {\mathit{Ha}}^{\ensuremath{-} 1/ 2} $ and ${k}_{c} \approx 0. 477{\mathit{Ha}}^{1/ 2} . $ The other pair of modes, which differs from the previous one by an odd distribution of vorticity along the magnetic field, is more stable with an approximately four times higher critical Reynolds number.


1967 ◽  
Vol 30 (1) ◽  
pp. 65-82 ◽  
Author(s):  
H. K. Moffatt ◽  
J. Toomre

The effect of an applied transverse magnetic field on the development of a two-dimensional jet of incompressible fluid is examined. The jet is prescribed in terms of its mass flux ρQ0 and its lateral scale d at an initial section x = 0. The three dimensionless numbers characterizing the problem are a Reynolds number R = Q0/ν, a magnetic Reynolds number Rm = μσQ0, and a magnetic interaction parameter N = σB20d2/ρQ0, where ρ represents density, σ conductivity, μ permeability and B0 applied field strength, and it is assumed that \[ R_m \ll 1,\quad R\gg 1,\quad N\ll 1. \] It is shown that when M2 = RN [Gt ] 1, an inviscid treatment is appropriate, and that the effect of the magnetic field is then to destroy the jet momentum within a distance of order N−1 in the downstream direction. A general solution for inviscid development is obtained, and it is shown that a large class of velocity profiles (though not all of them) are self-preserving.When M2 [Lt ] 1, it is shown that the viscous similarity solution obtained by Moreau (1963a, b) is relevant. This solution is re-derived and re-interpreted; it implies that the jet momentum is destroyed within a distance of order $R^{\frac{1}{4}}N^{-\frac{3}{4}}$ in the downstream direction.Some further aspects of the jet annihilation problem are qualitatively discussed in § 4, viz. the nature of the overall flow field, the effect of the presence of distant boundaries, the effect of increasing Rm to order unity and greater, and the effect of oblique injection. Finally the development of a jet of conducting fluid into a nonconducting environment is considered; in this case the jet is not stopped by the magnetic field unless a return path outside the fluid for the induced current is available.


2019 ◽  
Vol 286 ◽  
pp. 07009
Author(s):  
M. Lamine ◽  
A. Hifdi

A linear stability analysis of a plane channel flow with porous walls under a uniform cross-flow and an external transverse magnetic field is explored. The physical problem is governed by a system of combined equations of the hydrodynamic and those of Maxwell. The perturbed problem of base state leads to a modified classical Orr-Sommerfeld equation which is solved numerically using the Chebyshev spectral collocation method. The combined effects of the cross-flow Reynolds number and the Hartmann number on the dangerous mode of hydromagnetic stability are investigated.The study shows that, the magnetic field tends to suppress the instability occurred by cross-flow. This stabilizing effect becomes perceptible when the magnetic field produces a mode transition from walls mode to that of the center.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


Sign in / Sign up

Export Citation Format

Share Document