renormalisation group
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 23)

H-INDEX

44
(FIVE YEARS 3)

Author(s):  
Felipe Isaule ◽  
Ivan Morera

We provide a detailed presentation of the functional renormalisation group (FRG) approach to weakly-interacting Bose-Bose mixtures, including a complete discussion on the RG equations. To test this approach, we examine thermodynamic properties of balanced three-dimensional Bose-Bose gases at zero and finite temperatures and find a good agreement with related works. We also study ground-state energies of repulsive Bose polarons by examining mixtures in the limit of infinite population imbalance. Finally, we discuss future applications of the FRG to novel problems in Bose-Bose mixtures and related systems.


Author(s):  
Marc P. Bellon ◽  
◽  
Enrico I. Russo ◽  
◽  
◽  
...  

Building on our recent derivation of the Ward-Schwinger-Dyson equations for the cubic interaction model, we present here the first steps of their resurgent analysis. In our derivation of the WSD equations, we made sure that they had the properties of compatibility with the renormalisation group equations and independence from a regularisation procedure which was known to allow for the comparable studies in the Wess-Zumino model. The interactions between the transseries terms for the anomalous dimensions of the field and the vertex is at the origin of unexpected features, for which the effect of higher order corrections is not precisely known at this stage: we are only at the beginning of the journey to use resurgent methods to decipher non-perturbative effects in quantum field theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Tom Steudtner

Abstract For arbitrary four-dimensional quantum field theories with scalars and fermions, renormalisation group equations in the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme are investigated at three-loop order in perturbation theory. Collecting literature results, general expressions are obtained for field anomalous dimensions, Yukawa interactions, as well as fermion masses. The renormalisation group evolution of scalar quartic, cubic and mass terms is determined up to a few unknown coefficients. The combined results are applied to compute the renormalisation group evolution of the gaugeless Litim-Sannino model.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jochen Heitger ◽  
Fabian Joswig ◽  
Simon Kuberski

Abstract We present a determination of the charm quark mass in lattice QCD with three active quark flavours. The calculation is based on PCAC masses extracted from Nf = 2 + 1 flavour gauge field ensembles at five different lattice spacings in a range from 0.087 fm down to 0.039 fm. The lattice action consists of the O(a) improved Wilson-clover action and a tree-level improved Symanzik gauge action. Quark masses are non-perturbatively O(a) improved employing the Symanzik-counterterms available for this discretisation of QCD. To relate the bare mass at a specified low-energy scale with the renormalisation group invariant mass in the continuum limit, we use the non-pertubatively known factors that account for the running of the quark masses as well as for their renormalisation at hadronic scales. We obtain the renormalisation group invariant charm quark mass at the physical point of the three-flavour theory to be Mc = 1486(21) MeV. Combining this result with five-loop perturbation theory and the corresponding decoupling relations in the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme, one arrives at a result for the renormalisation group invariant charm quark mass in the four-flavour theory of Mc(Nf = 4) = 1548(23) MeV, where effects associated with the absence of a charmed, sea quark in the non-perturbative evaluation of the QCD path integral are not accounted for. In the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme, and at finite energy scales conventional in phenomenology, we quote $$ {m}_{\mathrm{c}}^{\overline{\mathrm{MS}}} $$ m c MS ¯ ($$ {m}_{\mathrm{c}}^{\overline{\mathrm{MS}}} $$ m c MS ¯ ; Nf = 4) = 1296(19) MeV and $$ {m}_{\mathrm{c}}^{\overline{\mathrm{MS}}} $$ m c MS ¯ (3 GeV; Nf = 4) = 1007(16) MeV for the renormalised charm quark mass.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. H. Ajjath ◽  
Pooja Mukherjee ◽  
V. Ravindran ◽  
Aparna Sankar ◽  
Surabhi Tiwari

Abstract We study the perturbative structure of threshold enhanced logarithms in the coefficient functions of deep inelastic scattering (DIS) and semi-inclusive e+e− annihilation (SIA) processes and setup a framework to sum them up to all orders in perturbation theory. Threshold logarithms show up as the distributions ((1−z)−1 logi(1−z))+ from the soft plus virtual (SV) and as logarithms logi(1−z) from next to SV (NSV) contributions. We use the Sudakov differential and the renormalisation group equations along with the factorisation properties of parton level cross sections to obtain the resummed result which predicts SV as well as next to SV contributions to all orders in strong coupling constant. In Mellin N space, we resum the large logarithms of the form logi(N) keeping 1/N corrections. In particular, the towers of logarithms, each of the form $$ {a}_s^n/{N}^{\alpha }{\log}^{2n-\alpha }(N),{a}_s^n/{N}^{\alpha }{\log}^{2n-1-\alpha }(N)\cdots $$ a s n / N α log 2 n − α N , a s n / N α log 2 n − 1 − α N ⋯ etc for α = 0, 1, are summed to all orders in as.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Kevin Falls

AbstractA geometric formulation of Wilson’s exact renormalisation group is presented based on a gauge invariant ultraviolet regularisation scheme without the introduction of a background field. This allows for a manifestly background independent approach to quantum gravity and gauge theories in the continuum. The regularisation is a geometric variant of Slavnov’s scheme consisting of a modified action, which suppresses high momentum modes, supplemented by Pauli–Villars determinants in the path integral measure. An exact renormalisation group flow equation for the Wilsonian effective action is derived by requiring that the path integral is invariant under a change in the cutoff scale while preserving quasi-locality. The renormalisation group flow is defined directly on the space of gauge invariant actions without the need to fix the gauge. We show that the one-loop beta function in Yang–Mills and the one-loop divergencies of General Relativity can be calculated without fixing the gauge. As a first non-perturbative application we find the form of the Yang–Mills beta function within a simple truncation of the Wilsonian effective action.


Sign in / Sign up

Export Citation Format

Share Document