scholarly journals A vortex-dynamical scaling theory for flickering buoyant diffusion flames

2018 ◽  
Vol 855 ◽  
pp. 1156-1169 ◽  
Author(s):  
Xi Xia ◽  
Peng Zhang

The flickering of buoyant diffusion flames is associated with the periodic shedding of toroidal vortices that are formed under gravity-induced shearing at the flame surface. Numerous experimental investigations have confirmed the scaling,$f\propto D^{-1/2}$, where$f$is the flickering frequency and$D$is the diameter of the fuel inlet. However, the connection between the toroidal vortex dynamics and the scaling has not been clearly understood. By incorporating the finding of Gharibet al.(J. Fluid Mech., vol. 360, 1998, pp. 121–140) that the detachment of a continuously growing vortex ring is inevitable and can be dictated by a universal constant that is essentially a non-dimensional circulation of the vortex, we theoretically established the connection between the periodicity of the toroidal vortices and the flickering of a buoyant diffusion flame with small Froude number. The scaling theory for flickering frequency was validated by the existing experimental data of pool flames and jet diffusion flames.

Author(s):  
J Li ◽  
Y Zhang

An experimental study has been performed for a buoyant jet diffusion flame, which was observed to oscillate at different frequencies spatially. The flame dynamics and structure were visualized by a commercial digital camera and a high-speed camera. Mixed fuel of methane and propane at certain proportion was found to generate very different vortex shedding behaviours. As a result, the flickering frequency of a methane/propane 1:1 mixture can be half of that of typically observed for pure methane or propane flame. The distance between adjacent flame puffs or the size of vortical structures in the reacting flow field, which can be modified by the fuel composition, was identified to be the key factor that affects the flickering frequencies. Repeated tests confirmed that mixed fuel at certain proportions can have a significant effect on the flame flickering frequency through the modification of vortex structure and dynamics.


1997 ◽  
Author(s):  
U. Hegde ◽  
D. Stocker ◽  
M. Bahadori ◽  
D. Stocker ◽  
M. Bahadori ◽  
...  

1997 ◽  
Author(s):  
M. Bahadori ◽  
L. Zhou ◽  
D. Stocker ◽  
M. Bahadori ◽  
L. Zhou ◽  
...  

2000 ◽  
Author(s):  
Mark Wernet ◽  
Paul Greenberg ◽  
Peter Sunderland ◽  
William Yanis

2006 ◽  
Vol 145 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Chih-Yung Wu ◽  
Yei-Chin Chao ◽  
Tsarng-Sheng Cheng ◽  
Yueh-Heng Li ◽  
Kuo-Yuan Lee ◽  
...  

2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


Sign in / Sign up

Export Citation Format

Share Document