scholarly journals Theoretical impulse threshold for particle dislodgement

2019 ◽  
Vol 863 ◽  
pp. 893-903 ◽  
Author(s):  
Sergio Maldonado ◽  
Gustavo A. M. de Almeida

The problem of determining the threshold of motion of a sediment particle resting on the bed of an open channel has historically been dominated by an approach based on the time–space-averaged bed shear stress (i.e. Shields criterion). Recently, experimental studies have promoted an alternative approach to predict the dislodgement threshold, which is based on the impulse of the flow-induced force. Nonetheless, theoretical analyses accompanying these studies result in complex expressions that fail to provide a direct estimate of said impulse threshold. We employ the work–energy principle to derive a prediction of the fundamental impulse threshold that the destabilising hydrodynamic force must overcome in order to achieve full particle dislodgement. For the bed configuration studied, which is composed of spheres, the proposed expression depends on the mobile particle’s size and mass, and shows excellent agreement with experimental observations previously published. The derivation presented in this paper may thus represent a robust theoretical framework that aids in the reinterpretation of existing data, as well as in the design of future experiments aimed at analysing the importance of hydrodynamic impulse as a criterion for prediction of particle dislodgement.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1423
Author(s):  
Amir Golpira ◽  
Fengbin Huang ◽  
Abul B.M. Baki

This study experimentally investigated the effect of boulder spacing and boulder submergence ratio on the near-bed shear stress in a single array of boulders in a gravel bed open channel flume. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. Four methods of estimating near-bed shear stress were compared. The results suggested a significant effect of boulder spacing and boulder submergence ratio on the near-bed shear stress estimations and their spatial distributions. It was found that at unsubmerged condition, the turbulent kinetic energy (TKE) and modified TKE methods can be used interchangeably to estimate the near-bed shear stress. At both submerged and unsubmerged conditions, the Reynolds method performed differently from the other point-methods. Moreover, a quadrant analysis was performed to examine the turbulent events and their contribution to the near-bed Reynolds shear stress with the effect of boulder spacing. Generally, the burst events (ejections and sweeps) were reduced in the presence of boulders. This study may improve the understanding of the effect of the boulder spacing and boulder submergence ratio on the near-bed shear stress estimations of stream restoration practices.


Author(s):  
Jerzy Wojewoda ◽  
Andrzej Stefański ◽  
Marian Wiercigroch ◽  
Tomasz Kapitaniak

In this paper, the phenomena of hysteretic behaviour of friction force observed during experiments are discussed. On the basis of experimental and theoretical analyses, we argue that such behaviour can be considered as a representation of the system dynamics. According to this approach, a classification of friction models, with respect to their sensitivity on the system motion characteristic, is introduced. General friction modelling of the phenomena accompanying dry friction and a simple yet effective approach to capture the hysteretic effect are proposed. Finally, the experimental results are compared with the numerical simulations for the proposed friction model.


2018 ◽  
Vol 45 (10) ◽  
pp. 4519-4528 ◽  
Author(s):  
Ran Zhang ◽  
Juan P. Cruz-Bastida ◽  
Daniel Gomez-Cardona ◽  
John W. Hayes ◽  
Ke Li ◽  
...  

Author(s):  
Edgar Onea

This chapter provides an overview of the most important theoretical positions on the exhaustivity inference often associated with it-clefts in English and comparable structures in other languages alongside with a brief review of the results of a number of experimental studies. There is a surprising discrepancy between the predictions of the theoretical analyses and the empirical findings. While theoretical approaches tend to derive exhaustivity as a necessary semantic inference, most experimental studies suggest that the exhaustivity of it-clefts might be a pragmatic inference. The chapter discusses this discrepancy in some detail and suggests some potential solutions.


2017 ◽  
Vol 831 ◽  
pp. 1-40 ◽  
Author(s):  
Wen-Yi Chang ◽  
George Constantinescu ◽  
Whey Fone Tsai

The flow and the turbulence structure generated by a circular porous cylinder of diameter $D$ containing solid cylinders of diameter $d$ placed in an open channel of depth $h\approx 0.5D$ are investigated using eddy-resolving simulations which resolve the wakes past the individual solid cylinders in the array. The solid cylinders extend from the bed through the water surface. This geometrical set-up is directly relevant to understand the physics of flow past an emerged patch of aquatic vegetation developing in a river channel or over its floodplain. Simulations are conducted with different solid volume fractions (SVFs) of the porous cylinder ($0.034<\text{SVF}<0.23$), relative diameters of the solid cylinders ($d/D=0.03$ and 0.06) and with flat and equilibrium scour bathymetry corresponding to the start and respectively the end of the erosion and deposition process. Comparison with the limiting case of a solid cylinder ($\text{SVF}=1$) is also discussed. The bed shear stress distributions and the turbulent flow fields are used to explain the sediment erosion mechanisms inside and around the porous cylinder. Simulations of the flat-bed cases reveal that for sufficiently large SVF values ($\text{SVF}>0.2$), necklace vortices form around the upstream face of the cylinder, the downflow penetrates partially inside the porous cylinder and a region of strong flow acceleration forms on the sides of the porous cylinder. These flow features are used to explain the development of scour around high-SVF porous cylinders. The effects of the SVF and $d/D$ on generating ‘corridors’ of strong flow acceleration in between the solid cylinders and energetic eddies in the wake of these cylinders are discussed, as these flow features control the amplification of the bed shear stress inside the porous cylinder. Simulations results are also used to quantify the time-averaged drag forces on the cylinders in the array, to identify the regions where these forces are comparable to those induced on an isolated cylinder and the percentage of cylinders in the array subject to relatively large mean drag forces. A logarithmic decrease of the mean time-averaged streamwise drag coefficient of the solid cylinders, $\overline{C}_{d}$, with increasing non-dimensional frontal area per unit volume of the porous cylinder, $aD$, is observed. Behind the cylinder, the eddies shed in the separated shear layers (SSLs) of the porous cylinder, and, for sufficiently large SVFs, the von Kármán wake billows are the main coherent structures responsible for the amplification of the bed shear stress and sediment entrainment. This paper also analyses the vertical non-uniformity of the mean flow and turbulent kinetic energy, and discusses how the SVF and bathymetry affect the spatial extent of the wake region (e.g. length of the SSLs and steady wake, total wake length) and other relevant variables (e.g. strength of the bleeding flow, dominant wake frequencies, turbulence amplification in the near wake). For the relatively shallow flow conditions ($D/h\approx 2.0$) considered, the simulation results show that the antisymmetric (von Kármán) shedding of wake billows behind the porous cylinder is greatly weakened once equilibrium scour conditions are approached. Comparison with data from laboratory experiments and from 3-D and 2-D simulations conducted for long porous cylinders (no bed) is also discussed.


Author(s):  
RUBEN HOVSEPYAN ◽  
ARMEN POGHOSYAN ◽  
EDUARD VARDANYAN

We are presenting the experimental studies of time-space characteristics of photochromic effect in lithium niobate crystals with double doping. The photoinduced autowaves of absorption coefficient changes under the light illumination of limited part of crystal were found. An analytical model is proposed for the explanation of appearance and spreading of charge waves.


2017 ◽  
Author(s):  
Alain Dib ◽  
M. Levent Kavvas

Abstract. The Saint-Venant equations are commonly used as the governing equations to solve for modeling the spatially varied unsteady flow in open channels. The presence of uncertainties in the channel or flow parameters renders these equations stochastic, thus requiring their solution in a stochastic framework in order to quantify the ensemble behavior and the variability of the process. While the Monte Carlo approach can be used for such a solution, its computational expense and its large number of simulations act to its disadvantage. This study proposes, explains, and derives a new methodology for solving the stochastic Saint-Venant equations in only one shot, without the need for a large number of simulations. The proposed methodology is derived by developing the nonlocal Lagrangian–Eulerian Fokker–Planck Equation of the characteristic form of the stochastic Saint-Venant equations for an open-channel flow process, with an uncertain roughness coefficient. A numerical method for its solution is subsequently devised. The application and validation of this methodology are provided in a companion paper, in which the statistical results computed by the proposed methodology are compared against the results obtained by the Monte Carlo approach.


Sign in / Sign up

Export Citation Format

Share Document