ensemble modeling
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 89)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol 461 ◽  
pp. 109774
Author(s):  
Saira M. Haider ◽  
Allison M. Benscoter ◽  
Leonard Pearlstine ◽  
Laura E. D'Acunto ◽  
Stephanie S. Romañach

2021 ◽  
Vol 13 (23) ◽  
pp. 4825
Author(s):  
Salman Naimi ◽  
Shamsollah Ayoubi ◽  
Mojtaba Zeraatpisheh ◽  
Jose Alexandre Melo Dematte

Soil salinization is a severe danger to agricultural activity in arid and semi-arid areas, reducing crop production and contributing to land destruction. This investigation aimed to utilize machine learning algorithms to predict spatial soil salinity (dS m−1) by combining environmental covariates derived from remotely sensed (RS) data, a digital elevation model (DEM), and proximal sensing (PS). The study is located in an arid region, southern Iran (52°51′–53°02′E; 28°16′–28°29′N), in which we collected 300 surface soil samples and acquired the spectral data with RS (Sentinel-2) and PS (electromagnetic induction instrument (EMI) and portable X-ray fluorescence (pXRF)). Afterward, we analyzed the data using five machine learning methods as follows: random forest—RF, k-nearest neighbors—kNN, support vector machines—SVM, partial least squares regression—PLSR, artificial neural networks—ANN, and the ensemble of individual models. To estimate the electrical conductivity of the saturated paste extract (ECe), we built three scenarios, including Scenario (1): Synthetic Soil Image (SySI) bands and salinity indices derived from it; Scenario (2): RS data, PS data, topographic attributes, and geology and geomorphology maps; and Scenario (3): the combination of Scenarios (1) and (2). The best prediction accuracy was obtained for the RF model in Scenario (3) (R2 = 0.48 and RMSE = 2.49), followed by Scenario (2) (RF model, R2 = 0.47 and RMSE = 2.50) and Scenario (1) for the SVM model (R2 = 0.26 and RMSE = 2.97). According to ensemble modeling, a combined strategy with the five models exceeded the performance of all the single ones and predicted soil salinity in all scenarios. The results revealed that the ensemble modeling method had higher reliability and more accurate predictive soil salinity than the individual approach. Relative improvement (RI%) showed that the R2 index in the ensemble model improved compared to the most precise prediction for the Scenarios (1), (2), and (3) with 120.95%, 56.82%, and 66.71%, respectively. We applied the best model in each scenario for mapping the soil salinity in the selected area, which indicated that ECe tended to increase from the northwestern to south and southeastern regions. The area with high ECe was located in the regions that mainly had low elevations and playa. The areas with low ECe were located in the higher elevations with steeper slopes and alluvial fans, and thus, relief had great importance. This study provides a precise, cost-effective, and scientific base prediction for decision-making purposes to map soil salinity in arid regions.


Author(s):  
Yong Zhao ◽  
Siyu Ye ◽  
Xianqi Chen ◽  
Yufeng Xia ◽  
Xiaohu Zheng

AbstractPolynomial Regression Surface (PRS) is a commonly used surrogate model for its simplicity, good interpretability, and computational efficiency. The performance of PRS is largely dependent on its basis functions. With limited samples, how to correctly select basis functions remains a challenging problem. To improve prediction accuracy, a PRS modeling approach based on multitask optimization and ensemble modeling (PRS-MOEM) is proposed for rational basis function selection with robustness. First, the training set is partitioned into multiple subsets by the cross validation method, and for each subset a sub-model is independently constructed by optimization. To effectively solve these multiple optimization tasks, an improved evolutionary algorithm with transfer migration is developed, which can enhance the optimization efficiency and robustness by useful information exchange between these similar optimization tasks. Second, a novel ensemble method is proposed to integrate the multiple sub-models into the final model. The significance of each basis function is scored according to the error estimation of the sub-models and the occurrence frequency of the basis functions in all the sub-models. Then the basis functions are ranked and selected based on the bias-corrected Akaike’s information criterion. PRS-MOEM can effectively mitigate the negative influence from the sub-models with large prediction error, and alleviate the uncertain impact resulting from the randomness of training subsets. Thus the basis function selection accuracy and robustness can be enhanced. Seven numerical examples and an engineering problem are utilized to test and verify the effectiveness of PRS-MOEM.


2021 ◽  
Vol 31 ◽  
pp. e01864
Author(s):  
Muhammad Naeem Awan ◽  
Zafeer Saqib ◽  
Francis Buner ◽  
David C. Lee ◽  
Arshid Pervez

Sign in / Sign up

Export Citation Format

Share Document