On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface

2019 ◽  
Vol 865 ◽  
pp. 212-246 ◽  
Author(s):  
J. D. Pickles ◽  
B. R. Mettu ◽  
P. K. Subbareddy ◽  
V. Narayanaswamy

Interactions between an oblique shock wave generated by a sharp fin placed on a cylindrical surface and the incoming boundary layer are investigated to unravel the mean features of the resulting shock/boundary layer interaction (SBLI) unit. This fin-on-cylinder SBLI unit has several unique features caused by the three-dimensional (3-D) relief offered by the cylindrical surface that noticeably alter the shock structure. Complementary experimental and computational studies are made to delineate both the surface and off-body flow features of the fin-on-cylinder SBLI unit and to obtain a detailed understanding of the mechanisms that dictate the mean flow and wall pressure features of the SBLI unit. Results show that the fin-on-cylinder SBLI exhibits substantial deviation from quasi-conical symmetry that is observed in planar fin SBLI. Furthermore, the separated flow growth rate appears to decrease with downstream distance and the separation size is consistently smaller than the planar fin SBLI with the same inflow and fin configurations. The causes for the observed diminution of the separated flow and its downstream growth rate were investigated in the light of changes caused by the cylinder curvature on the inviscid as well as separation shock. It was found that the inviscid shock gets progressively weakened in the region close to the triple point with downstream distance due to the 3-D relief effect from cylinder curvature. This weakening of the inviscid shock feeds into the separation shock, which is also independently impacted by the 3-D relief, to result in the observed modifications in the fin-on-cylinder SBLI unit.

2009 ◽  
Vol 629 ◽  
pp. 87-108 ◽  
Author(s):  
S. PIPONNIAU ◽  
J. P. DUSSAUGE ◽  
J. F. DEBIÈVE ◽  
P. DUPONT

A model to explain the low-frequency unsteadiness found in shock-induced separation is proposed for cases in which the flow is reattaching downstream. It is based on the properties of fluid entrainment in the mixing layer generated downstream of the separation shock whose low-frequency motions are related to successive contractions and dilatations of the separated bubble. The main aerodynamic parameters on which the process depends are presented. This model is consistent with experimental observations obtained by particle image velocimetry (PIV) in a Mach 2.3 oblique shock wave/turbulent boundary layer interaction, as well as with several different configurations reported in the literature for Mach numbers ranging from 0 to 5.


2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


2019 ◽  
Vol 871 ◽  
Author(s):  
P. K. Rabey ◽  
S. P. Jammy ◽  
P. J. K. Bruce ◽  
N. D. Sandham

The low-frequency unsteadiness of oblique shock wave/boundary layer interactions (SBLIs) has been investigated using large-eddy simulation (LES) and high-frequency pressure measurements from experiments. Particular attention has been paid to off-centreline behaviour: the LES dataset was generated including sidewalls, and experimental pressure measurements were acquired across the entire span of the reflected shock foot. The datasets constitute the first maps of low-frequency unsteadiness in both streamwise and spanwise directions. The results reveal that significant low-frequency shock motion (with $St\approx 0.03$) occurs away from the centreline, along most of the central separation shock and in the corner regions. The most powerful low-frequency unsteadiness occurs off-centre, likely due to the separation shock being strengthened by shocks arising from the swept interactions on the sidewalls. Both simulation and experimental results exhibit asymmetry about the spanwise centre. In simulations, this may be attributed to a lack of statistical convergence; however, the fact that this is also seen in experiments is indicative that some SBLIs may exhibit some inherent asymmetry across the two spanwise halves of the separation bubble. There is also significant low-frequency power in the corner separations. The relation of the unsteadiness in the corner regions to that in the centre is investigated by means of two-point correlations: a key observation is that significant correlation does not extend across the attached flow channel between the central and corner separations.


2018 ◽  
Vol 848 ◽  
pp. 154-192 ◽  
Author(s):  
David Estruch-Samper ◽  
Gaurav Chandola

This paper presents an experimental study on shock-wave/turbulent-boundary-layer interaction unsteadiness and delves specifically into the shear layer’s role. A range of axisymmetric step-induced interactions is investigated and the scale of separation is altered by over an order of magnitude – mass in the recirculation by two orders – while subjected to constant separation-shock strength. The effect of the separated shear layer on interaction unsteadiness is thus isolated and its kinematics are characterised. Results point at a mechanism whereby the depletion of separated flow is dictated by the state of the large eddy structures at their departure from the bubble. Low-frequency pulsations are found to adjust in response and sustain a reconciling view of an entrainment–recharge process, with both an inherent effect of the upstream boundary layer on shear layer inception and an increase in the mass locally acquired by eddies as they develop downstream.


2019 ◽  
Vol 862 ◽  
pp. 1166-1202 ◽  
Author(s):  
N. Bonne ◽  
V. Brion ◽  
E. Garnier ◽  
R. Bur ◽  
P. Molton ◽  
...  

A two-dimensional analysis of the resolvent spectrum of a Mach 1.6 transitional boundary layer impacted by an oblique shock wave is carried out. The investigation is based on a two-dimensional mean flow obtained by a RANS model that includes a transition criterion. The goal is to evaluate whether such a low cost RANS based resolvent approach is capable of describing the frequencies and physics involved in this transitional boundary layer/shock-wave interaction. Data from an experiment and a companion large eddy simulation (LES) are utilized as reference for the validation of the method. The flow is characterized by a laminar boundary layer upstream, a laminar separation bubble (LSB) in the interaction region and a turbulent boundary layer downstream. The flow exhibits low amplitude unsteadiness in the LSB and at the reflected shock wave with three particular oscillation frequencies, qualified as low, medium and high in reference to their range in Strouhal number, here based on free stream velocity and LSB length ($S_{t}=0.03{-}0.11$, 0.3–0.4 and 2–3 respectively). Through the resolvent analysis this dynamics is found to correspond to an amplifier behaviour of the flow. The resolvent responses match the averaged Fourier mode of the time dependent flow field, here described by the LES, with a close agreement in frequency and spatial distribution, thereby validating the resolvent approach. The low frequency dynamics relates to a pseudo-resonance process that sequentially implies the amplification in the separated shear layer of the LSB, an excitation of the shock foot and a backward travelling density wave. As this wave hits back the separation point the amplification in the shear layer starts again and loops. The medium and high frequency modes relate to the periodic expansion/reduction of the bubble and to the turbulent fluctuations at the reattachment point of the bubble, respectively.


2010 ◽  
Vol 3 (2) ◽  
Author(s):  
Pavel Polivanov ◽  
Sidorenko Andrey ◽  
Maslov Anatoliy

Experimental study of separated flow in a zone of oblique shock wave / turbulent boundary layer interaction was carried out for Mach number 2 and Reynolds number Reθ = 2,7÷3,5 × 103. Streamwise pressure distribution on the model surface was obtained, Schlieren and oil-flow visualizations were performed. The paper gives detailed data of hot-wire anemometry measurements in upstream boundary layer, interaction and recovery regions. Unsteady nature of separated zone and reflected shock wave was discovered. The effect of side walls on quasi 2D structure of separated flow is described.


2018 ◽  
Vol 853 ◽  
pp. 171-204 ◽  
Author(s):  
Ilan J. Grossman ◽  
Paul J. K. Bruce

An oblique shock wave is generated in a Mach 2 flow at a flow deflection angle of$12^{\circ }$. The resulting shock-wave–boundary-layer interaction (SWBLI) at the tunnel wall is observed. A novel traversable shock generator allows the position of the SWBLI to be varied relative to a downstream expansion fan. The relationship between the SWBLI, the expansion fan and the wind tunnel arrangement is studied. Schlieren photography, surface oil flow visualisation, particle image velocimetry and high-spatial-resolution wall pressure measurements are used to investigate the flow. It is observed that stream-normal movement of the shock generator downwards (towards the floor and hence the point of shock reflection) is accompanied by (1) growth in the streamwise extent of the shock-induced boundary layer separation, (2) upstream movement of the shock-induced separation point while the reattachment point remains nearly fixed, (3) an increase in separation shock strength and (4) transition between regular and irregular (Mach) reflection without an increase in incident shock strength. The role of free interaction theory in defining the separation shock angle is considered and shown to be consistent with the present measurements over a short streamwise extent. An SWBLI representation is proposed and reasoned which explains the apparent increase in separation shock strength that occurs without an increase in incident shock strength.


Author(s):  
G. A. Gerolymos ◽  
Y. N. Kallas ◽  
K. D. Papailiou

The turbulent normal fluctuation terms have been found from measurements to be very important, when approaching separation, inside the separated flow region, as well as, in the region where a shock wave interacts with a turbulent boundary layer. In the present work correlations are developped on the basis of available experimental results, which relate the normal fluctuation terms, appearing in integral formulations for turbulent boundary layer calculation methods, to mean flow quantities. These correlations are valid, as far as compressible attached or separated turbulent boundary layers are concerned, as well as in the case of a shock wave/turbulent boundary layer interaction which leads to boundary layer separation. Furthermore, correlations are developed for the maxima of the velocity fluctuation terms.


1996 ◽  
Vol 326 ◽  
pp. 321-341 ◽  
Author(s):  
W. R. C. Phillips ◽  
Z. Wu ◽  
J. L. Lumley

Parallel inviscid O(1) shear interacting with O(ε) spanwise-independent neutral rotational Rayleigh waves are used to model turbulent boundary layer flow over small-amplitude rigid wavy terrain. Of specific interest is the instability of the flow to spanwise-periodic initially exponentially growing longitudinal vortex modes via the Craik–Leibovich CL2-O(1) instability mechanism and whether it is this instability mechanism that gives rise to longitudinal vortices evident in the recent experiments of Gong et al. (1996). In modelling the flow, wave and turbulence length scales are assumed sufficiently disparate to cause minimal interaction. This allows the primary mean velocity profile to be specified. Two profiles were chosen: a power law and the logarithmic law of the wall. Important in wave–mean interactions of this class are the effect of wave-induced fluctuations upon the mean state and the influence of the developing mean flow on the fluctuating part of the motion. The former is described by a generalized Lagrangian-mean formulation; the latter by a modified Rayleigh equation. Together they comprise an eigenvalue problem for the growth rate appropriate to the initial stages of the instability. Both primary mean flows are unstable to longitudinal vortex form in the presence of Rayleigh waves whose amplitudes diminish with altitude. Moreover the interaction is most unstable for streamwise wavenumbers α = O(1), the growth rate increasing with increased spanwise wavenumber. In comparing the results with experiment, it is first shown that spanwise-independent waves excited in Gong et al.'s experiment depict velocity fluctuations whose amplitudes diminish with altitude in accord with those for appropriate Rayleigh waves. Concordantly, the longitudinal vortices depict transverse velocity components that are weaker by a factor of ε than the axial perturbation and are observed to grow at a rate consistent with exponential growth. All are key features of CL2-O(1), although the observed growth rate is not in accord with the maximal suggested by inviscid instability theory. Rather it appears that the spanwise wavenumber takes a value at which energy is extracted from the mean motion in an optimal volume-averaged sense while minimizing energy loss to both viscous dissipation and small-scale turbulence. It is concluded that the CL2-O(1) instability mechanism is physically realizable and that the data of Gong et al. represent the first documented observations thereof.


Author(s):  
D. Furey ◽  
P. Atsavapranee ◽  
K. Cipolla

Stereo Particle Image velocimetry data was collected over high aspect ratio flexible cylinders (L/a = 1.5 to 3 × 105) to evaluate the axial development of the turbulent boundary layer where the boundary layer thickness becomes significantly larger than the cylinder diameter (δ/a>>1). The flexible cylinders are approximately neutrally buoyant and have an initial length of 152 m and radii of 0.45 mm and 1.25 mm. The cylinders were towed at speeds ranging from 3.8 to 15.4 m/sec in the David Taylor Model Basin. The analysis of the SPIV data required a several step procedure to evaluate the cylinder boundary flow. First, the characterization of the flow field from the towing strut is required. This evaluation provides the residual mean velocities and turbulence levels caused by the towing hardware at each speed and axial location. These values, called tare values, are necessary for comparing to the cylinder flow results. Second, the cylinder flow fields are averaged together and the averaged tare fields are subtracted out to remove strut-induced ambient flow effects. Prior to averaging, the cylinder flow fields are shifted to collocate the cylinder within the field. Since the boundary layer develops slowly, all planes of data occurring within each 10 meter increment of the cylinder length are averaged together to produce the mean boundary layer flow. Corresponding fields from multiple runs executed using the same experimental parameters are also averaged. This flow is analyzed to evaluate the level of axisymmetry in the data and determine if small changes in cylinder angle affect the mean flow development. With axisymmetry verified, the boundary flow is further averaged azimuthally around the cylinder to produce mean boundary layer profiles. Finally, the fluctuating velocity levels are evaluated for the flow with the cylinder and compared to the fluctuating velocity levels in the tare data. This paper will first discuss the data analysis techniques for the tare data and the averaging methods implemented. Second, the data analysis considerations will be presented for the cylinder data and the averaging and cylinder tracking techniques. These results are used to extract relevant boundary layer parameters including δ, δ* and θ. Combining these results with wall shear and momentum thickness values extracted from averaged cylinder drag data, the boundary layer can be well characterized.


Sign in / Sign up

Export Citation Format

Share Document