scholarly journals Viscous-fingering mechanisms under a peeling elastic sheet

2019 ◽  
Vol 864 ◽  
pp. 1177-1207
Author(s):  
Gunnar G. Peng ◽  
John R. Lister

We study the mechanisms affecting the viscous-fingering instability in an elastic-walled Hele-Shaw cell by considering the stability of steady states of unidirectional peeling-by-pulling and peeling-by-bending. We demonstrate that the elasticity of the wall influences the steady base state but has a negligible direct effect on the behaviour of linear perturbations, which thus behave like in the ‘printer’s instability’ with rigid walls. Moreover, the geometry of the cell can be very well approximated as a triangular wedge in the stability analysis. We identify four distinct mechanisms – surface tension acting on the horizontal and the vertical interfacial curvatures, kinematic compression in the longitudinal base flow, and the films deposited on the cell walls – that each contribute to stabilizing the system. The vertical curvature is the dominant stabilizing mechanism for small capillary numbers, but all four mechanisms have a significant effect in a large region of parameter space.

2018 ◽  
Vol 849 ◽  
pp. 163-191 ◽  
Author(s):  
Draga Pihler-Puzović ◽  
Gunnar G. Peng ◽  
John R. Lister ◽  
Matthias Heil ◽  
Anne Juel

We study the viscous-fingering instability in a radial Hele-Shaw cell in which the top boundary has been replaced by a thin elastic sheet. The introduction of wall elasticity delays the onset of the fingering instability to much larger values of the injection flow rate. Furthermore, when the instability develops, the fingers that form on the expanding air–liquid interface are short and stubby, in contrast with the highly branched patterns observed in rigid-walled cells (Pihler-Puzović et al., Phys. Rev. Lett., vol. 108, 2012, 074502). We report the outcome of a comprehensive experimental study of this problem and compare the experimental observations to the predictions from a theoretical model that is based on the solution of the Reynolds lubrication equations, coupled to the Föppl–von-Kármán equations which describe the deformation of the elastic sheet. We perform a linear stability analysis to study the evolution of small-amplitude non-axisymmetric perturbations to the time-evolving base flow. We then derive a simplified model by exploiting the observations (i) that the non-axisymmetric perturbations to the sheet are very small and (ii) that perturbations to the flow occur predominantly in a small wedge-shaped region ahead of the air–liquid interface. This allows us to identify the various physical mechanisms by which viscous fingering is weakened (or even suppressed) by the presence of wall elasticity. We show that the theoretical predictions for the growth rate of small-amplitude perturbations are in good agreement with experimental observations for injection flow rates that are slightly larger than the critical flow rate required for the onset of the instability. We also characterize the large-amplitude fingering patterns that develop at larger injection flow rates. We show that the wavenumber of these patterns is still well predicted by the linear stability analysis, and that the length of the fingers is set by the local geometry of the compliant cell.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1547-1550
Author(s):  
YOULIANG CHENG ◽  
XIN LI ◽  
ZHONGYAO FAN ◽  
BOFEN YING

Representing surface tension by nonlinear relationship on temperature, the boundary value problem of linear stability differential equation on small perturbation is derived. Under the condition of the isothermal wall the effects of nonlinear surface tension on stability of heat transfer in saturated liquid film of different liquid low boiling point gases are investigated as wall temperature is varied.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


1994 ◽  
Vol 5 (1) ◽  
pp. 21-37
Author(s):  
Joseph D. Fehribach

This paper considers the stability of melt-solid interfaces to eigenfunction perturbations for a system of equations which describe the melting and freezing of helium. The analysis is carried out in both planar and spherical geometries. The principal results are that when the melt is freezing, under certain far-field conditions, the interface is stable in the sense of Mullins and Sekerka. On the other hand, when the solid is melting (at least when the melting is sufficiently fast), the interface is unstable. In some circumstances these instabilities are oscillatory, with amplitude and growth rate increasing with surface tension and frequency. The last section considers the original problem of Mullins and Sekerka in the present notation.


1999 ◽  
Vol 382 ◽  
pp. 331-349 ◽  
Author(s):  
S. HANSEN ◽  
G. W. M. PETERS ◽  
H. E. H. MEIJER

The effect of surfactant on the breakup of a viscous filament, initially at rest, surrounded by another viscous fluid is studied using linear stability analysis. The role of the surfactant is characterized by the elasticity number – a high elasticity number implies that surfactant is important. As expected, the surfactant slows the growth rate of disturbances. The influence of surfactant on the dominant wavenumber is less trivial. In the Stokes regime, the dominant wavenumber for most viscosity ratios increases with the elasticity number; for filament to matrix viscosity ratios ranging from about 0.03 to 0.4, the dominant wavenumber decreases when the elasticity number increases. Interestingly, a surfactant does not affect the stability of a filament when the surface tension (or Reynolds) number is very large.


2000 ◽  
Vol 409 ◽  
pp. 273-308 ◽  
Author(s):  
S. TANVEER

In this paper, we review some aspects of viscous fingering in a Hele-Shaw cell that at first sight appear to defy intuition. These include singular effects of surface tension relative to the corresponding zero-surface-tension problem both for the steady and unsteady problem. They also include a disproportionately large influence of small effects like local inhomogeneity of the flow field near the finger tip, or of the leakage term in boundary conditions that incorporate realistic thin-film effects. Through simple explicit model problems, we demonstrate how such properties are not unexpected for a system approaching structural instability or ill-posedness.


Sign in / Sign up

Export Citation Format

Share Document