On the origins of steady streaming in precessing fluids

2021 ◽  
Vol 910 ◽  
Author(s):  
Thomas Albrecht ◽  
Hugh M. Blackburn ◽  
Juan M. Lopez ◽  
Richard Manasseh ◽  
Patrice Meunier
Keyword(s):  

Abstract

2008 ◽  
Vol 608 ◽  
pp. 71-80 ◽  
Author(s):  
RODOLFO REPETTO ◽  
JENNIFER H. SIGGERS ◽  
ALESSANDRO STOCCHINO

We consider the flow in a spherical chamber undergoing periodic torsional oscillations about an axis through its centre, and analyse it both theoretically and experimentally. We calculate the flow in the limit of small-amplitude oscillations in the form of a series expansion in powers of the amplitude, finding that at second order, a steady streaming flow develops consisting of two toroidal cells. This streaming behaviour is also observed in our experiments. We find good quantitative agreement between theory and experiments, and we discuss the dependence of the steady streaming behaviour as both the oscillation frequency and amplitude are varied.


1965 ◽  
Vol 69 (658) ◽  
pp. 714-718 ◽  
Author(s):  
Ronald D. Mills

The Navier-Stokes equations are solved iteratively on a small digital computer for the class of flows generated within a rectangular “cavity” by a surface passing over its open end. Solutions are presented for depth/breadth ratios ƛ=0.5 (shallow), 10 (square), 20 (deep) and Reynolds number 100. Flow photographs ore obtained which largely confirm the predicted flows. The theoretical velocity profiles and pressure distributions through the centre of the vortex in the square cavity are calculated.In an appendix an improved finite difference formula is given for the vorticity generated at a moving boundary.Since Thorn began his pioneering work some thirty-five years ago the number of numerical solutions which have been obtained for the equations of incompressible viscous fluid motion remains small (see bibliographies of Thom and Apelt, Fromm). The known solutions are principally for steady streaming flows, although two methods have now been used with success for non-steady flows (Payne jets and Fromm flow past obstacles). By contrast this paper is concerned with the class of closed flows generated in a rectangular region of varying depth/breadth ratio by a surface passing over an open end. This problem has been considered for a number of reasons.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 668 ◽  
Author(s):  
Kanji Kaneko ◽  
Takayuki Osawa ◽  
Yukinori Kametani ◽  
Takeshi Hayakawa ◽  
Yosuke Hasegawa ◽  
...  

The steady streaming (SS) phenomenon is gaining increased attention in the microfluidics community, because it can generate net mass flow from zero-mean vibration. We developed numerical simulation and experimental measurement tools to analyze this vibration-induced flow, which has been challenging due to its unsteady nature. The validity of these analysis methods is confirmed by comparing the three-dimensional (3D) flow field and the resulting particle trajectories induced around a cylindrical micro-pillar under circular vibration. In the numerical modeling, we directly solved the flow in the Lagrangian frame so that the substrate with a micro-pillar becomes stationary, and the results were converted to a stationary Eulerian frame to compare with the experimental results. The present approach enables us to avoid the introduction of a moving boundary or infinitesimal perturbation approximation. The flow field obtained by the micron-resolution particle image velocimetry (micro-PIV) measurement supported the three-dimensionality observed in the numerical results, which could be important for controlling the mass transport and manipulating particulate objects in microfluidic systems.


2010 ◽  
Vol 657 ◽  
pp. 430-455 ◽  
Author(s):  
ROMAIN GUIBERT ◽  
FRANCK PLOURABOUÉ ◽  
ALAIN BERGEON

We present a theoretical and numerical study of three-dimensional pulsatile confined flow between two rigid horizontal surfaces separated by an average gap h, and having three-dimensional wavy shapes with arbitrary amplitude σh where σ ~ O(1), but long-wavelength variations λ, with h/λ ≪ 1. We are interested in pulsating flows with moderate inertial effect arising from the Reynolds stress due to the cavity non-parallelism. We analyse the inertial steady-streaming and the second harmonic flows in a lubrication approximation. The dependence of the three-dimensional velocity field in the transverse direction is analytically obtained for arbitrary Womersley numbers and possibly overlapping Stokes layers. The horizontal dependence of the flow is solved numerically by computing the first two pressure fields of an asymptotic expansion in the small inertial limit. We study the variations of the flow structure with the amplitude, the channel's wavelength and the Womersley number for various families of three-dimensional channels. The steady-streaming flow field in the horizontal plane exhibits a quadrupolar vortex, the size of which is adjusted to the cavity wavelength. When increasing the wall amplitude, the wavelengths characterizing the channel or the Womersley number, we find higher-order harmonic flow structures, the origin of which can either be inertially driven or geometrically induced. When some of the channel symmetries are broken, a steady-streaming current appears which has a quadratic dependence on the pressure drop, the amplitude of which is linked to the Womersley number.


2019 ◽  
Vol 863 ◽  
pp. 904-926 ◽  
Author(s):  
M. Dvoriashyna ◽  
R. Repetto ◽  
J. H. Tweedy

We study the flow induced by eye rotations in the anterior chamber (AC) of the eye, the region between the cornea and the iris. We model the geometry of the AC as a thin domain sitting on the surface of a sphere, and study both the simpler case of a constant-height domain as well as a more realistic AC shape. We model eye rotations as harmonic in time with prescribed frequency $\unicode[STIX]{x1D714}_{f}$ and amplitude $\unicode[STIX]{x1D6FD}$, and use lubrication theory to simplify the governing equations. We write the equations in a reference frame moving with the domain and show that fluid motion is governed by three dimensionless parameters: the aspect ratio $\unicode[STIX]{x1D716}$ of the AC, the angular amplitude $\unicode[STIX]{x1D6FD}$ and the Womersley number $\unicode[STIX]{x1D6FC}$. We simplify the equations under the physiologically realistic assumptions that $\unicode[STIX]{x1D716}$ is small and $\unicode[STIX]{x1D6FC}$ large, leading to a linear system that can be decomposed into three harmonics: a dominant frequency component, with frequency $\unicode[STIX]{x1D714}_{f}$, and a steady streaming component and a third component with frequency $2\unicode[STIX]{x1D714}_{f}$. We solve the problem analytically for the constant-height domain and numerically as the solution of ordinary differential equations in the more realistic geometry. Both the primary flow and the steady streaming are shown to have a highly three-dimensional structure, which has not been highlighted in previous numerical works. We show that the steady streaming is particularly relevant from the clinical point of view, as it induces fluid mixing in the AC. Furthermore, the steady flow component is the dominant mixing mechanism during the night, when the thermal flow induced by temperature variations across the AC is suppressed.


Author(s):  
A. R. Bestman

AbstractFluid motion established by an oscillatory pressure gradient superimposed on a mean, in a tube of slowly varying section, is studied when the temperature of the tube wall varies with axial distance. Particular attention is focussed on the mean flow and steady streaming components of the oscillatory flow of higher approximation. For the velocity components, the axial component takes the pride of place, since this component is responsible for convection of nutrients to various parts of the body of a mammal in systematic circulation. A salient point in the paper concerns consequences of free convection currents at a constriction (stenosis).


1971 ◽  
Vol 50 (1) ◽  
pp. 33-48 ◽  
Author(s):  
W. H. Lyne

The method of conformal transformation is used to investigate the steady streaming generated by an oscillatory viscous flow over a wavy wall. By assuming that the amplitude of the wall is much smaller than the Stokes layer thickness, the equations are linearized and solved for large and small values of the parameter kR. This parameter is the ratio of the amplitude of oscillation of a fluid particle to the wavelength of the wall. When kR [Lt ] 1, the results due to Schlichting (1932) are recovered, and when kR [Gt ] 1 the equations resemble closely those derived in the theory of stability of plane parallel flows. With the aid of this theory the first-order steady streaming is found.


2007 ◽  
Vol 122 (5) ◽  
pp. 3004
Author(s):  
Charlotte W. Kotas ◽  
Peter H. Rogers ◽  
Minami Yoda

Sign in / Sign up

Export Citation Format

Share Document