scholarly journals Direct numerical simulation of turbulent channel flow over random rough surfaces

2020 ◽  
Vol 908 ◽  
Author(s):  
Rong Ma ◽  
Karim Alamé ◽  
Krishnan Mahesh

Abstract

2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


Author(s):  
Atsushi Sakurai ◽  
Koji Matsubara ◽  
Shigenao Maruyama

Importance of turbulence and radiation interaction (TRI) has been investigated in a turbulent channel flow by using direct numerical simulation (DNS) to clarify detailed turbulent flow structure and heat transfer mechanisms. To investigate the effect of correlation functions between gas absorption and temperature fluctuation, the two cases of correlation are tested. Consequently, the TRI effect can be clearly observed when the correlation is positive. This fact provides the evidence that radiative intensity is enhanced by the turbulent fluctuation. The DNS results suggest the significance in the fundamental aspect of TRI. Furthermore, effects of frictional Reynolds number, Reτ, are investigated. Comparing with the case of Reτ = 150, the location of the enhancement peaks of Reτ = 300 shifts toward the walls. It is found that the relative importance of the TRI correspond to the structure of temperature fluctuation intensity originated from the differences of the Reτ.


1992 ◽  
Vol 114 (3) ◽  
pp. 598-606 ◽  
Author(s):  
N. Kasagi ◽  
Y. Tomita ◽  
A. Kuroda

A direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air was carried out. The isoflux condition was imposed on the two walls so that the local mean temperature increased linearly in the streamwise direction. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained were root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and dissipation time scales. They agreed fairly well with existing experimental and numerical simulation data. Each term in the budget equations of temperature variance, its dissipation rate, and turbulent heat fluxes was also calculated. It was found that the temperature fluctuation θ′ was closely correlated with the streamwise velocity fluctuation u′, particularly in the near-wall region. Hence, the distribution of budget terms for the streamwise and wall-normal heat fluxes, u′θ′ and v′θ′, were very similar to those for the two Reynolds stress components, u′u′ and u′v′.


Sign in / Sign up

Export Citation Format

Share Document