Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings

2021 ◽  
Vol 931 ◽  
Author(s):  
Long Chen ◽  
Luyao Wang ◽  
Chao Zhou ◽  
Jianghao Wu ◽  
Bo Cheng

The mechanisms of leading-edge vortex (LEV) formation and its stable attachment to revolving wings depend highly on Reynolds number ( $\textit {Re}$ ). In this study, using numerical methods, we examined the $\textit {Re}$ dependence of LEV formation dynamics and stability on revolving wings with $\textit {Re}$ ranging from 10 to 5000. Our results show that the duration of the LEV formation period and its steady-state intensity both reduce significantly as $\textit {Re}$ decreases from 1000 to 10. Moreover, the primary mechanisms contributing to LEV stability can vary at different $\textit {Re}$ levels. At $\textit {Re} <200$ , the LEV stability is mainly driven by viscous diffusion. At $200<\textit {Re} <1000$ , the LEV is maintained by two distinct vortex-tilting-based mechanisms, i.e. the planetary vorticity tilting and the radial–tangential vorticity balance. At $\textit {Re}>1000$ , the radial–tangential vorticity balance becomes the primary contributor to LEV stability, in addition to secondary contributions from tip-ward vorticity convection, vortex compression and planetary vorticity tilting. It is further shown that the regions of tip-ward vorticity convection and tip-ward pressure gradient almost overlap at high $\textit {Re}$ . In addition, the contribution of planetary vorticity tilting in LEV stability is $\textit {Re}$ -independent. This work provides novel insights into the various mechanisms, in particular those of vortex tilting, in driving the LEV formation and stability on low- $\textit {Re}$ revolving wings.

1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


2014 ◽  
Author(s):  
Mohsen Daghooghi ◽  
Richard G. Bottom ◽  
Iman Borazjani

Author(s):  
Yoshikazu Hirato ◽  
Minao Shen ◽  
Sachin Aggarwal ◽  
Ashok Gopalarathnam ◽  
Jack R. Edwards

2018 ◽  
Vol 5 (7) ◽  
pp. 172197 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.


2002 ◽  
Vol 39 (5) ◽  
pp. 868-875 ◽  
Author(s):  
Scott J. Schreck ◽  
William E. Faller ◽  
Michael C. Robinson

Sign in / Sign up

Export Citation Format

Share Document