Effect of Reynolds number on leading edge vortex for a wing in unsteady motion

Author(s):  
A. Shahzad ◽  
H. R. Hamdani ◽  
M. N. Mumtaz ◽  
K. Parvez ◽  
M. Aqib
1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


2018 ◽  
Vol 5 (7) ◽  
pp. 172197 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.


2021 ◽  
Vol 931 ◽  
Author(s):  
Long Chen ◽  
Luyao Wang ◽  
Chao Zhou ◽  
Jianghao Wu ◽  
Bo Cheng

The mechanisms of leading-edge vortex (LEV) formation and its stable attachment to revolving wings depend highly on Reynolds number ( $\textit {Re}$ ). In this study, using numerical methods, we examined the $\textit {Re}$ dependence of LEV formation dynamics and stability on revolving wings with $\textit {Re}$ ranging from 10 to 5000. Our results show that the duration of the LEV formation period and its steady-state intensity both reduce significantly as $\textit {Re}$ decreases from 1000 to 10. Moreover, the primary mechanisms contributing to LEV stability can vary at different $\textit {Re}$ levels. At $\textit {Re} <200$ , the LEV stability is mainly driven by viscous diffusion. At $200<\textit {Re} <1000$ , the LEV is maintained by two distinct vortex-tilting-based mechanisms, i.e. the planetary vorticity tilting and the radial–tangential vorticity balance. At $\textit {Re}>1000$ , the radial–tangential vorticity balance becomes the primary contributor to LEV stability, in addition to secondary contributions from tip-ward vorticity convection, vortex compression and planetary vorticity tilting. It is further shown that the regions of tip-ward vorticity convection and tip-ward pressure gradient almost overlap at high $\textit {Re}$ . In addition, the contribution of planetary vorticity tilting in LEV stability is $\textit {Re}$ -independent. This work provides novel insights into the various mechanisms, in particular those of vortex tilting, in driving the LEV formation and stability on low- $\textit {Re}$ revolving wings.


2002 ◽  
Vol 39 (5) ◽  
pp. 868-875 ◽  
Author(s):  
Scott J. Schreck ◽  
William E. Faller ◽  
Michael C. Robinson

2021 ◽  
Vol 11 (6) ◽  
pp. 2450
Author(s):  
Jong-Seob Han ◽  
Christian Breitsamter

A sweptback angle can directly regulate a leading-edge vortex on various aerodynamic devices as well as on the wings of biological flyers, but the effect of a sweptback angle has not yet been sufficiently investigated. Here, we thoroughly investigated the effect of the sweptback angle on aerodynamic characteristics of low-aspect-ratio flat plates at a Reynolds number of 2.85 × 104. Direct force/moment measurements and surface oil-flow visualizations were conducted in the wind-tunnel B at the Technical University of Munich. It was found that while the maximum lift at an aspect ratio of 2.03 remains unchanged, two other aspect ratios of 3.13 and 4.50 show a gradual increment in the maximum lift with an increasing sweptback angle. The largest leading-edge vortex contribution was found at the aspect ratio of 3.13, resulting in a superior lift production at a sufficient sweptback angle. This is similar to that of a revolving/flapping wing, where an aspect ratio around three shows a superior lift production. In the oil-flow patterns, it was observed that while the leading-edge vortices at aspect ratios of 2.03 and 3.13 fully covered the surfaces, the vortex at an aspect ratio of 4.50 only covered up the surface approximately three times the chord, similar to that of a revolving/flapping wing. Based on the pattern at the aspect ratio of 4.50, a critical length of the leading-edge vortex of a sweptback plate was measured as ~3.1 times the chord.


2017 ◽  
Vol 4 (8) ◽  
pp. 170077 ◽  
Author(s):  
Rowan Eveline Muir ◽  
Abel Arredondo-Galeana ◽  
Ignazio Maria Viola

Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.


Sign in / Sign up

Export Citation Format

Share Document