A Galton–Watson process with a threshold

2016 ◽  
Vol 53 (2) ◽  
pp. 614-621
Author(s):  
K. B. Athreya ◽  
H.-J. Schuh

Abstract In this paper we study a special class of size dependent branching processes. We assume that for some positive integer K as long as the population size does not exceed level K, the process evolves as a discrete-time supercritical branching process, and when the population size exceeds level K, it evolves as a subcritical or critical branching process. It is shown that this process does die out in finite time T. The question of when the mean value E(T) is finite or infinite is also addressed.

1999 ◽  
Vol 36 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Han-Xing Wang ◽  
Dafan Fang

A population-size-dependent branching process {Zn} is considered where the population's evolution is controlled by a Markovian environment process {ξn}. For this model, let mk,θ and be the mean and the variance respectively of the offspring distribution when the population size is k and a environment θ is given. Let B = {ω : Zn(ω) = 0 for some n} and q = P(B). The asymptotic behaviour of limnZn and is studied in the case where supθ|mk,θ − mθ| → 0 for some real numbers {mθ} such that infθmθ > 1. When the environmental sequence {ξn} is a irreducible positive recurrent Markov chain (particularly, when its state space is finite), certain extinction (q = 1) and non-certain extinction (q < 1) are studied.


1984 ◽  
Vol 21 (01) ◽  
pp. 40-49 ◽  
Author(s):  
F. C. Klebaner

We consider a branching-process model {Zn }, where the law of offspring distribution depends on the population size. We consider the case when the means mn (mn is the mean of offspring distribution when the population size is equal to n) tend to a limit m &gt; 1 as n →∞. For a certain class of processes {Zn } necessary conditions for convergence in L 1 and L 2 and sufficient conditions for almost sure convergence and convergence in L 2 of Wn = Zn/mn are given.


1999 ◽  
Vol 36 (02) ◽  
pp. 611-619 ◽  
Author(s):  
Han-Xing Wang ◽  
Dafan Fang

A population-size-dependent branching process {Z n } is considered where the population's evolution is controlled by a Markovian environment process {ξ n }. For this model, let m k,θ and be the mean and the variance respectively of the offspring distribution when the population size is k and a environment θ is given. Let B = {ω : Z n (ω) = 0 for some n} and q = P(B). The asymptotic behaviour of lim n Z n and is studied in the case where supθ|m k,θ − m θ| → 0 for some real numbers {m θ} such that infθ m θ &gt; 1. When the environmental sequence {ξ n } is a irreducible positive recurrent Markov chain (particularly, when its state space is finite), certain extinction (q = 1) and non-certain extinction (q &lt; 1) are studied.


1989 ◽  
Vol 26 (3) ◽  
pp. 431-445 ◽  
Author(s):  
Fima C. Klebaner

We consider a multitype population-size-dependent branching process in discrete time. A process is considered to be near-critical if the mean matrices of offspring distributions approach the mean matrix of a critical process as the population size increases. We show that if the second moments of offspring distributions stabilize as the population size increases, and the limiting variances are not too large in comparison with the deviation of the means from criticality, then the extinction probability is less than 1 and the process grows arithmetically fast, in the sense that any linear combination which is not orthogonal to the left eigenvector of the limiting mean matrix grows linearly to a limit distribution. We identify cases when the limiting distribution is gamma. A result on transience of multidimensional Markov chains is also given.


1984 ◽  
Vol 21 (1) ◽  
pp. 40-49 ◽  
Author(s):  
F. C. Klebaner

We consider a branching-process model {Zn}, where the law of offspring distribution depends on the population size. We consider the case when the means mn (mn is the mean of offspring distribution when the population size is equal to n) tend to a limit m > 1 as n →∞. For a certain class of processes {Zn} necessary conditions for convergence in L1 and L2 and sufficient conditions for almost sure convergence and convergence in L2 of Wn = Zn/mn are given.


1989 ◽  
Vol 26 (03) ◽  
pp. 431-445
Author(s):  
Fima C. Klebaner

We consider a multitype population-size-dependent branching process in discrete time. A process is considered to be near-critical if the mean matrices of offspring distributions approach the mean matrix of a critical process as the population size increases. We show that if the second moments of offspring distributions stabilize as the population size increases, and the limiting variances are not too large in comparison with the deviation of the means from criticality, then the extinction probability is less than 1 and the process grows arithmetically fast, in the sense that any linear combination which is not orthogonal to the left eigenvector of the limiting mean matrix grows linearly to a limit distribution. We identify cases when the limiting distribution is gamma. A result on transience of multidimensional Markov chains is also given.


2006 ◽  
Vol 38 (4) ◽  
pp. 1098-1115 ◽  
Author(s):  
Ronald Meester ◽  
Pieter Trapman

We consider an epidemic model where the spread of the epidemic can be described by a discrete-time Galton-Watson branching process. Between times n and n + 1, any infected individual is detected with unknown probability π and the numbers of these detected individuals are the only observations we have. Detected individuals produce a reduced number of offspring in the time interval of detection, and no offspring at all thereafter. If only the generation sizes of a Galton-Watson process are observed, it is known that one can only estimate the first two moments of the offspring distribution consistently on the explosion set of the process (and, apart from some lattice parameters, no parameters that are not determined by those moments). Somewhat surprisingly, in our context, where we observe a binomially distributed subset of each generation, we are able to estimate three functions of the parameters consistently. In concrete situations, this often enables us to estimate π consistently, as well as the mean number of offspring. We apply the estimators to data for a real epidemic of classical swine fever.


1976 ◽  
Vol 13 (02) ◽  
pp. 219-230 ◽  
Author(s):  
J. Gani ◽  
I. W. Saunders

This paper is concerned with the parity of a population of yeast cells, each of which may bud, not bud or die. Two multitype models are considered: a Galton-Watson process in discrete time, and its analogous birth-death process in continuous time. The mean number of cells with parity 0, 1, 2, … is obtained in both cases; some simple results are also derived for the second moments of the two processes.


1991 ◽  
Vol 28 (03) ◽  
pp. 512-519 ◽  
Author(s):  
Fima C. Klebaner

Sufficient conditions for survival and extinction of multitype population-size-dependent branching processes in discrete time are obtained. Growth rates are determined on the set of divergence to infinity. The limiting distribution of a properly normalized process can be generalized gamma, normal or degenerate.


1984 ◽  
Vol 16 (1) ◽  
pp. 30-55 ◽  
Author(s):  
F. C. Klebaner

We consider a stochastic model for the development in time of a population {Zn} where the law of offspring distribution depends on the population size. We are mainly concerned with the case when the mean mk and the variance of offspring distribution stabilize as the population size k grows to ∞, The process exhibits different asymptotic behaviour according to m < l, m = 1, m> l; moreover, the rate of convergence of mk to m plays an important role. It is shown that if m < 1 or m = 1 and mn approaches 1 not slower than n–2 then the process dies out with probability 1. If mn approaches 1 from above and the rate of convergence is n–1, then Zn/n converges in distribution to a gamma distribution, moreover a.s. both on a set of non-extinction and there are no constants an, such that Zn/an converges in probability to a non-degenerate limit. If mn approaches m > 1 not slower than n–α, α > 0, and do not grow to ∞ faster than nß, β <1 then Zn/mn converges almost surely and in L2 to a non-degenerate limit. A number of general results concerning the behaviour of sums of independent random variables are also given.


Sign in / Sign up

Export Citation Format

Share Document