Geometric rate of growth in population-size-dependent branching processes

1984 ◽  
Vol 21 (01) ◽  
pp. 40-49 ◽  
Author(s):  
F. C. Klebaner

We consider a branching-process model {Zn }, where the law of offspring distribution depends on the population size. We consider the case when the means mn (mn is the mean of offspring distribution when the population size is equal to n) tend to a limit m > 1 as n →∞. For a certain class of processes {Zn } necessary conditions for convergence in L 1 and L 2 and sufficient conditions for almost sure convergence and convergence in L 2 of Wn = Zn/mn are given.

1984 ◽  
Vol 21 (1) ◽  
pp. 40-49 ◽  
Author(s):  
F. C. Klebaner

We consider a branching-process model {Zn}, where the law of offspring distribution depends on the population size. We consider the case when the means mn (mn is the mean of offspring distribution when the population size is equal to n) tend to a limit m > 1 as n →∞. For a certain class of processes {Zn} necessary conditions for convergence in L1 and L2 and sufficient conditions for almost sure convergence and convergence in L2 of Wn = Zn/mn are given.


1984 ◽  
Vol 16 (1) ◽  
pp. 30-55 ◽  
Author(s):  
F. C. Klebaner

We consider a stochastic model for the development in time of a population {Zn} where the law of offspring distribution depends on the population size. We are mainly concerned with the case when the mean mk and the variance of offspring distribution stabilize as the population size k grows to ∞, The process exhibits different asymptotic behaviour according to m < l, m = 1, m> l; moreover, the rate of convergence of mk to m plays an important role. It is shown that if m < 1 or m = 1 and mn approaches 1 not slower than n–2 then the process dies out with probability 1. If mn approaches 1 from above and the rate of convergence is n–1, then Zn/n converges in distribution to a gamma distribution, moreover a.s. both on a set of non-extinction and there are no constants an, such that Zn/an converges in probability to a non-degenerate limit. If mn approaches m > 1 not slower than n–α, α > 0, and do not grow to ∞ faster than nß, β <1 then Zn/mn converges almost surely and in L2 to a non-degenerate limit. A number of general results concerning the behaviour of sums of independent random variables are also given.


1999 ◽  
Vol 36 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Han-Xing Wang ◽  
Dafan Fang

A population-size-dependent branching process {Zn} is considered where the population's evolution is controlled by a Markovian environment process {ξn}. For this model, let mk,θ and be the mean and the variance respectively of the offspring distribution when the population size is k and a environment θ is given. Let B = {ω : Zn(ω) = 0 for some n} and q = P(B). The asymptotic behaviour of limnZn and is studied in the case where supθ|mk,θ − mθ| → 0 for some real numbers {mθ} such that infθmθ > 1. When the environmental sequence {ξn} is a irreducible positive recurrent Markov chain (particularly, when its state space is finite), certain extinction (q = 1) and non-certain extinction (q < 1) are studied.


1999 ◽  
Vol 36 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Han-xing Wang

We generalize a population-size-dependent branching process to a more general branching model called the population-size-dependent branching process in random environments. For the model where {Zn}n≥0 is associated with the stationary environment ξ− = {ξn}n≥0, let B = {ω : Zn(ω) = for some n}, and q(ξ−) = P(B | ξ−, Z0 = 1). The result is that P(q(̅ξ) = 1) is either 1 or 0, and sufficient conditions for certain extinction (i.e. P(q(ξ−) = 1) = 1) and for non-certain extinction (i.e. P(q(ξ−) < 1) = 1) are obtained for the model.


1999 ◽  
Vol 36 (02) ◽  
pp. 611-619 ◽  
Author(s):  
Han-Xing Wang ◽  
Dafan Fang

A population-size-dependent branching process {Z n } is considered where the population's evolution is controlled by a Markovian environment process {ξ n }. For this model, let m k,θ and be the mean and the variance respectively of the offspring distribution when the population size is k and a environment θ is given. Let B = {ω : Z n (ω) = 0 for some n} and q = P(B). The asymptotic behaviour of lim n Z n and is studied in the case where supθ|m k,θ − m θ| → 0 for some real numbers {m θ} such that infθ m θ &gt; 1. When the environmental sequence {ξ n } is a irreducible positive recurrent Markov chain (particularly, when its state space is finite), certain extinction (q = 1) and non-certain extinction (q &lt; 1) are studied.


1999 ◽  
Vol 36 (01) ◽  
pp. 146-154 ◽  
Author(s):  
Han-xing Wang

We generalize a population-size-dependent branching process to a more general branching model called the population-size-dependent branching process in random environments. For the model where {Z n } n≥0 is associated with the stationary environment ξ− = {ξ n } n≥0, let B = {ω : Z n (ω) = for some n}, and q(ξ−) = P(B | ξ−, Z 0 = 1). The result is that P(q(̅ξ) = 1) is either 1 or 0, and sufficient conditions for certain extinction (i.e. P(q(ξ−) = 1) = 1) and for non-certain extinction (i.e. P(q(ξ−) &lt; 1) = 1) are obtained for the model.


1984 ◽  
Vol 16 (01) ◽  
pp. 30-55 ◽  
Author(s):  
F. C. Klebaner

We consider a stochastic model for the development in time of a population {Z n } where the law of offspring distribution depends on the population size. We are mainly concerned with the case when the mean mk and the variance of offspring distribution stabilize as the population size k grows to ∞, The process exhibits different asymptotic behaviour according to m &lt; l, m = 1, m&gt; l; moreover, the rate of convergence of mk to m plays an important role. It is shown that if m &lt; 1 or m = 1 and mn approaches 1 not slower than n –2 then the process dies out with probability 1. If mn approaches 1 from above and the rate of convergence is n –1, then Zn /n converges in distribution to a gamma distribution, moreover a.s. both on a set of non-extinction and there are no constants an , such that Zn /an converges in probability to a non-degenerate limit. If mn approaches m &gt; 1 not slower than n– α, α &gt; 0, and do not grow to ∞ faster than nß , β &lt;1 then Zn /mn converges almost surely and in L 2 to a non-degenerate limit. A number of general results concerning the behaviour of sums of independent random variables are also given.


2016 ◽  
Vol 53 (2) ◽  
pp. 614-621
Author(s):  
K. B. Athreya ◽  
H.-J. Schuh

Abstract In this paper we study a special class of size dependent branching processes. We assume that for some positive integer K as long as the population size does not exceed level K, the process evolves as a discrete-time supercritical branching process, and when the population size exceeds level K, it evolves as a subcritical or critical branching process. It is shown that this process does die out in finite time T. The question of when the mean value E(T) is finite or infinite is also addressed.


1975 ◽  
Vol 7 (03) ◽  
pp. 468-494
Author(s):  
H. Hering

We construct an immigration-branching process from an inhomogeneous Poisson process, a parameter-dependent probability distribution of populations and a Markov branching process with homogeneous transition function. The set of types is arbitrary, and the parameter is allowed to be discrete or continuous. Assuming a supercritical branching part with primitive first moments and finite second moments, we prove propositions on the mean square convergence and the almost sure convergence of normalized averaging processes associated with the immigration-branching process.


1991 ◽  
Vol 28 (03) ◽  
pp. 512-519 ◽  
Author(s):  
Fima C. Klebaner

Sufficient conditions for survival and extinction of multitype population-size-dependent branching processes in discrete time are obtained. Growth rates are determined on the set of divergence to infinity. The limiting distribution of a properly normalized process can be generalized gamma, normal or degenerate.


Sign in / Sign up

Export Citation Format

Share Document