scholarly journals On the rate of convergence for the length of the longest common subsequences in hidden Markov models

2019 ◽  
Vol 56 (2) ◽  
pp. 558-573
Author(s):  
C. Houdré ◽  
G. Kerchev

AbstractLet (X, Y) = (Xn, Yn)n≥1 be the output process generated by a hidden chain Z = (Zn)n≥1, where Z is a finite-state, aperiodic, time homogeneous, and irreducible Markov chain. Let LCn be the length of the longest common subsequences of X1,..., Xn and Y1,..., Yn. Under a mixing hypothesis, a rate of convergence result is obtained for E[LCn]/n.

Author(s):  
Chittabrata Ghosh ◽  
Carlos Cordeiro ◽  
Dharma P. Agrawal ◽  
M. Bhaskara Rao

2002 ◽  
Vol 10 (3) ◽  
pp. 241-251 ◽  
Author(s):  
R.J. Boys ◽  
D.A. Henderson

This paper describes a Bayesian approach to determining the order of a finite state Markov chain whose transition probabilities are themselves governed by a homogeneous finite state Markov chain. It extends previous work on homogeneous Markov chains to more general and applicable hidden Markov models. The method we describe uses a Markov chain Monte Carlo algorithm to obtain samples from the (posterior) distribution for both the order of Markov dependence in the observed sequence and the other governing model parameters. These samples allow coherent inferences to be made straightforwardly in contrast to those which use information criteria. The methods are illustrated by their application to both simulated and real data sets.


2018 ◽  
Vol 28 (5) ◽  
pp. 1552-1563 ◽  
Author(s):  
Tunny Sebastian ◽  
Visalakshi Jeyaseelan ◽  
Lakshmanan Jeyaseelan ◽  
Shalini Anandan ◽  
Sebastian George ◽  
...  

Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as ‘Low’, ‘Moderate’ and ‘High’ with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.


Sign in / Sign up

Export Citation Format

Share Document