Asymptotic behavior of the weak approximation to a class of Gaussian processes

2021 ◽  
Vol 58 (3) ◽  
pp. 693-707
Author(s):  
Hui Jiang ◽  
Qingshan Yang

AbstractWe study, under mild conditions, the weak approximation constructed from a standard Poisson process for a class of Gaussian processes, and establish its sample path moderate deviations. The techniques consist of a good asymptotic exponential approximation in moderate deviations, the Besov–Lèvy modulus embedding, and an exponential martingale technique. Moreover, our results are applied to the weak approximations associated with the moving average of Brownian motion, fractional Brownian motion, and an Ornstein–Uhlenbeck process.

1999 ◽  
Vol 31 (1) ◽  
pp. 254-278 ◽  
Author(s):  
Cheng-Shang Chang ◽  
David D. Yao ◽  
Tim Zajic

Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y, as a fractional integral of Riemann-Liouville type applied to a more standard process X—one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X, we then establish the MDP for Y. Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y. In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.


2000 ◽  
Vol 37 (02) ◽  
pp. 400-407 ◽  
Author(s):  
Rosario Delgado ◽  
Maria Jolis

We prove that, under rather general conditions, the law of a continuous Gaussian process represented by a stochastic integral of a deterministic kernel, with respect to a standard Wiener process, can be weakly approximated by the law of some processes constructed from a standard Poisson process. An example of a Gaussian process to which this result applies is the fractional Brownian motion with any Hurst parameter.


2015 ◽  
Vol 47 (04) ◽  
pp. 1108-1131 ◽  
Author(s):  
Claudia Klüppelberg ◽  
Muneya Matsui

Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.


2000 ◽  
Vol 37 (2) ◽  
pp. 400-407 ◽  
Author(s):  
Rosario Delgado ◽  
Maria Jolis

We prove that, under rather general conditions, the law of a continuous Gaussian process represented by a stochastic integral of a deterministic kernel, with respect to a standard Wiener process, can be weakly approximated by the law of some processes constructed from a standard Poisson process. An example of a Gaussian process to which this result applies is the fractional Brownian motion with any Hurst parameter.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 991 ◽  
Author(s):  
Mario Abundo ◽  
Enrica Pirozzi

We investigate the main statistical parameters of the integral over time of the fractional Brownian motion and of a kind of pseudo-fractional Gaussian process, obtained as a classical Gauss–Markov process from Doob representation by replacing Brownian motion with fractional Brownian motion. Possible applications in the context of neuronal models are highlighted. A fractional Ornstein–Uhlenbeck process is considered and relations with the integral of the pseudo-fractional Gaussian process are provided.


2015 ◽  
Vol 47 (4) ◽  
pp. 1108-1131 ◽  
Author(s):  
Claudia Klüppelberg ◽  
Muneya Matsui

Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.


1999 ◽  
Vol 31 (01) ◽  
pp. 254-278 ◽  
Author(s):  
Cheng-Shang Chang ◽  
David D. Yao ◽  
Tim Zajic

Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y, as a fractional integral of Riemann-Liouville type applied to a more standard process X—one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X, we then establish the MDP for Y. Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y. In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 716 ◽  
Author(s):  
Pavel Kříž ◽  
Leszek Szała

We introduce three new estimators of the drift parameter of a fractional Ornstein–Uhlenbeck process. These estimators are based on modifications of the least-squares procedure utilizing the explicit formula for the process and covariance structure of a fractional Brownian motion. We demonstrate their advantageous properties in the setting of discrete-time observations with fixed mesh size, where they outperform the existing estimators. Numerical experiments by Monte Carlo simulations are conducted to confirm and illustrate theoretical findings. New estimation techniques can improve calibration of models in the form of linear stochastic differential equations driven by a fractional Brownian motion, which are used in diverse fields such as biology, neuroscience, finance and many others.


Sign in / Sign up

Export Citation Format

Share Document