scholarly journals Extinction time of the logistic process

2021 ◽  
Vol 58 (3) ◽  
pp. 637-676
Author(s):  
Eric Foxall

AbstractThe logistic birth and death process is perhaps the simplest stochastic population model that has both density-dependent reproduction and a phase transition, and a lot can be learned about the process by studying its extinction time, $\tau_n$ , as a function of system size n. A number of existing results describe the scaling of $\tau_n$ as $n\to\infty$ for various choices of reproductive rate $r_n$ and initial population $X_n(0)$ as a function of n. We collect and complete this picture, obtaining a complete classification of all sequences $(r_n)$ and $(X_n(0))$ for which there exist rescaling parameters $(s_n)$ and $(t_n)$ such that $(\tau_n-t_n)/s_n$ converges in distribution as $n\to\infty$ , and identifying the limits in each case.

1985 ◽  
Vol 17 (01) ◽  
pp. 42-52 ◽  
Author(s):  
P. J. Brockwell

The distribution of the extinction time for a linear birth and death process subject to catastrophes is determined. The catastrophes occur at a rate proportional to the population size and their magnitudes are random variables having an arbitrary distribution with generating function d(·). The asymptotic behaviour (for large initial population size) of the expected time to extinction is found under the assumption that d(.) has radius of convergence greater than 1. Corresponding results are derived for a related class of diffusion processes interrupted by catastrophes with sizes having an arbitrary distribution function.


1985 ◽  
Vol 17 (1) ◽  
pp. 42-52 ◽  
Author(s):  
P. J. Brockwell

The distribution of the extinction time for a linear birth and death process subject to catastrophes is determined. The catastrophes occur at a rate proportional to the population size and their magnitudes are random variables having an arbitrary distribution with generating function d(·). The asymptotic behaviour (for large initial population size) of the expected time to extinction is found under the assumption that d(.) has radius of convergence greater than 1. Corresponding results are derived for a related class of diffusion processes interrupted by catastrophes with sizes having an arbitrary distribution function.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


1986 ◽  
Vol 23 (4) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfy λ0 = 0, λ j > 0 for each j > 0, and . Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λ j = jλ, µj = jμ) with catastrophes of several different types.


2016 ◽  
Vol 53 (4) ◽  
pp. 1193-1205 ◽  
Author(s):  
A. D. Barbour ◽  
P. Chigansky ◽  
F. C. Klebaner

Abstract In the paper we present a phenomenon occurring in population processes that start near 0 and have large carrying capacity. By the classical result of Kurtz (1970), such processes, normalized by the carrying capacity, converge on finite intervals to the solutions of ordinary differential equations, also known as the fluid limit. When the initial population is small relative to the carrying capacity, this limit is trivial. Here we show that, viewed at suitably chosen times increasing to ∞, the process converges to the fluid limit, governed by the same dynamics, but with a random initial condition. This random initial condition is related to the martingale limit of an associated linear birth-and-death process.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfy λ 0 = 0, λ j > 0 for each j > 0, and . Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λ j = jλ, µj = jμ) with catastrophes of several different types.


Author(s):  
Jakub Konieczny ◽  
Mariusz Lemańczyk ◽  
Clemens Müllner

AbstractWe obtain a complete classification of complex-valued sequences which are both multiplicative and automatic.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexey Sharapov ◽  
Evgeny Skvortsov

Abstract We give a complete classification of dynamical invariants in 3d and 4d Higher Spin Gravity models, with some comments on arbitrary d. These include holographic correlation functions, interaction vertices, on-shell actions, conserved currents, surface charges, and some others. Surprisingly, there are a good many conserved p-form currents with various p. The last fact, being in tension with ‘no nontrivial conserved currents in quantum gravity’ and similar statements, gives an indication of hidden integrability of the models. Our results rely on a systematic computation of Hochschild, cyclic, and Chevalley-Eilenberg cohomology for the corresponding higher spin algebras. A new invariant in Chern-Simons theory with the Weyl algebra as gauge algebra is also presented.


Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document