A temporal factorization at the maximum for certain positive self-similar Markov processes

2020 ◽  
Vol 57 (4) ◽  
pp. 1045-1069
Author(s):  
Matija Vidmar

AbstractFor a spectrally negative self-similar Markov process on $[0,\infty)$ with an a.s. finite overall supremum, we provide, in tractable detail, a kind of conditional Wiener–Hopf factorization at the maximum of the absorption time at zero, the conditioning being on the overall supremum and the jump at the overall supremum. In a companion result the Laplace transform of this absorption time (on the event that the process does not go above a given level) is identified under no other assumptions (such as the process admitting a recurrent extension and/or hitting zero continuously), generalizing some existing results in the literature.

1981 ◽  
Vol 18 (01) ◽  
pp. 297-301 ◽  
Author(s):  
Lennart Bondesson

In this note the joint distribution for the times in an interval [0, t] spent in the states 1, 2, ···, N in a standard quasi-Markov process of order N is considered. An expression for the Laplace transform with respect to t of the Laplace–Stieltjes transform of this joint distribution is derived.


1981 ◽  
Vol 18 (1) ◽  
pp. 297-301 ◽  
Author(s):  
Lennart Bondesson

In this note the joint distribution for the times in an interval [0, t] spent in the states 1, 2, ···, N in a standard quasi-Markov process of order N is considered. An expression for the Laplace transform with respect to t of the Laplace–Stieltjes transform of this joint distribution is derived.


1977 ◽  
Vol 9 (02) ◽  
pp. 417-422 ◽  
Author(s):  
J. Michael Harrison

Let be a process with stationary, independent increments and no negative jumps. Let be this same process modified by a reflecting barrier at zero (a storage process). Assuming that – and denote by ψ(s) the exponent function of X. A simple formula is derived for the Laplace transform of as a function of W(0). Using the fact that the distribution of M is the unique stationary distribution of the Markov process W, this yields an elementary proof that the Laplace transform of M is µs/ψ(s). If it follows that These surprisingly simple formulas were originally obtained by Zolotarev using analytical methods.


1977 ◽  
Vol 9 (2) ◽  
pp. 417-422 ◽  
Author(s):  
J. Michael Harrison

Let be a process with stationary, independent increments and no negative jumps. Let be this same process modified by a reflecting barrier at zero (a storage process). Assuming that – and denote by ψ(s) the exponent function of X. A simple formula is derived for the Laplace transform of as a function of W(0). Using the fact that the distribution of M is the unique stationary distribution of the Markov process W, this yields an elementary proof that the Laplace transform of M is µs/ψ(s). If it follows that These surprisingly simple formulas were originally obtained by Zolotarev using analytical methods.


1991 ◽  
Vol 28 (04) ◽  
pp. 822-832 ◽  
Author(s):  
Attila Csenki

In this note, an irreducible semi-Markov process is considered whose finite state space is partitioned into two non-empty sets A and B. Let MB (t) stand for the number of visits of Y to B during the time interval [0, t], t > 0. A renewal argument is used to derive closed-form expressions for the Laplace transform (with respect to t) of a certain family of functions in terms of which the moments of MB (t) are easily expressible. The theory is applied to a small reliability model in conjunction with a Tauberian argument to evaluate the behaviour of the first two moments of MB (t) as t →∞.


1991 ◽  
Vol 28 (4) ◽  
pp. 822-832 ◽  
Author(s):  
Attila Csenki

In this note, an irreducible semi-Markov process is considered whose finite state space is partitioned into two non-empty sets A and B. Let MB(t) stand for the number of visits of Y to B during the time interval [0, t], t > 0. A renewal argument is used to derive closed-form expressions for the Laplace transform (with respect to t) of a certain family of functions in terms of which the moments of MB(t) are easily expressible. The theory is applied to a small reliability model in conjunction with a Tauberian argument to evaluate the behaviour of the first two moments of MB(t) as t →∞.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This chapter describes the construction of a resolvent operator using the Laplace transform of a parametrix for the heat kernel and a perturbative argument. In the equation (μ‎-L) R(μ‎) f = f, R(μ‎) is a right inverse for (μ‎-L). In Hölder spaces, these are the natural elliptic estimates for generalized Kimura diffusions. The chapter first constructs the resolvent kernel using an induction over the maximal codimension of bP, and proves various estimates on it, along with corresponding estimates for the solution operator for the homogeneous Cauchy problem. It then considers holomorphic semi-groups and uses contour integration to construct the solution to the heat equation, concluding with a discussion of Kimura diffusions where all coefficients have the same leading homogeneity.


Sign in / Sign up

Export Citation Format

Share Document