scholarly journals Bounds for expected supremum of fractional Brownian motion with drift

2021 ◽  
Vol 58 (2) ◽  
pp. 411-427
Author(s):  
Krzysztof Bisewski ◽  
Krzysztof Dębicki ◽  
Michel Mandjes

AbstractWe provide upper and lower bounds for the mean $\mathscr{M}(H)$ of $\sup_{t\geq 0} \{B_H(t) - t\}$ , with $B_H(\!\cdot\!)$ a zero-mean, variance-normalized version of fractional Brownian motion with Hurst parameter $H\in(0,1)$ . We find bounds in (semi-) closed form, distinguishing between $H\in(0,\frac{1}{2}]$ and $H\in[\frac{1}{2},1)$ , where in the former regime a numerical procedure is presented that drastically reduces the upper bound. For $H\in(0,\frac{1}{2}]$ , the ratio between the upper and lower bound is bounded, whereas for $H\in[\frac{1}{2},1)$ the derived upper and lower bound have a strongly similar shape. We also derive a new upper bound for the mean of $\sup_{t\in[0,1]} B_H(t)$ , $H\in(0,\frac{1}{2}]$ , which is tight around $H=\frac{1}{2}$ .

10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


2013 ◽  
Vol 23 (6) ◽  
pp. 1257-1265 ◽  
Author(s):  
GEORGE DAVIE ◽  
WILLEM L. FOUCHÉ

We examine a construction due to Fouché in which a Brownian motion is constructed from an algorithmically random infinite binary sequence. We show that although the construction is provably not computable in the sense of computable analysis, a lower bound for the rate of convergence is computable in any upper bound for the compressibilty of the sequence, making the construction layerwise computable.


2007 ◽  
Vol 21 (4) ◽  
pp. 611-621 ◽  
Author(s):  
Karthik Natarajan ◽  
Zhou Linyi

In this article, we derive a tight closed-form upper bound on the expected value of a three-piece linear convex function E[max(0, X, mX − z)] given the mean μ and the variance σ2 of the random variable X. The bound is an extension of the well-known mean–variance bound for E[max(0, X)]. An application of the bound to price the strangle option in finance is provided.


2017 ◽  
Vol 7 (2) ◽  
pp. 169-181
Author(s):  
Audra McMillan ◽  
Adam Smith

Abstract Block graphons (also called stochastic block models) are an important and widely studied class of models for random networks. We provide a lower bound on the accuracy of estimators for block graphons with a large number of blocks. We show that, given only the number $k$ of blocks and an upper bound $\rho$ on the values (connection probabilities) of the graphon, every estimator incurs error ${\it{\Omega}}\left(\min\left(\rho, \sqrt{\frac{\rho k^2}{n^2}}\right)\right)$ in the $\delta_2$ metric with constant probability for at least some graphons. In particular, our bound rules out any non-trivial estimation (that is, with $\delta_2$ error substantially less than $\rho$) when $k\geq n\sqrt{\rho}$. Combined with previous upper and lower bounds, our results characterize, up to logarithmic terms, the accuracy of graphon estimation in the $\delta_2$ metric. A similar lower bound to ours was obtained independently by Klopp et al.


Author(s):  
Paolo Guasoni ◽  
Yuliya Mishura ◽  
Miklós Rásonyi

Abstract In the high-frequency limit, conditionally expected increments of fractional Brownian motion converge to a white noise, shedding their dependence on the path history and the forecasting horizon and making dynamic optimisation problems tractable. We find an explicit formula for locally mean–variance optimal strategies and their performance for an asset price that follows fractional Brownian motion. Without trading costs, risk-adjusted profits are linear in the trading horizon and rise asymmetrically as the Hurst exponent departs from Brownian motion, remaining finite as the exponent reaches zero while diverging as it approaches one. Trading costs penalise numerous portfolio updates from short-lived signals, leading to a finite trading frequency, which can be chosen so that the effect of trading costs is arbitrarily small, depending on the required speed of convergence to the high-frequency limit.


1999 ◽  
Vol 36 (4) ◽  
pp. 1155-1166 ◽  
Author(s):  
David Perry ◽  
Wolfgang Stadje

We study a service system with a fixed upper bound for its workload and two independent inflows of customers: frequent ‘small’ ones and occasional ‘large’ ones. The workload process generated by the small customers is modelled by a Brownian motion with drift, while the arrival times of the large customers form a Poisson process and their service times are exponentially distributed. The workload process is reflected at zero and at its upper capacity bound. We derive the stationary distribution of the workload and several related quantities and compute various important characteristics of the system.


2006 ◽  
Vol 17 (04) ◽  
pp. 851-867 ◽  
Author(s):  
EHUD FRIEDGUT ◽  
ORNA KUPFERMAN ◽  
MOSHE Y. VARDI

The complementation problem for nondeterministic word automata has numerous applications in formal verification. In particular, the language-containment problem, to which many verification problems is reduced, involves complementation. For automata on finite words, which correspond to safety properties, complementation involves determinization. The 2n blow-up that is caused by the subset construction is justified by a tight lower bound. For Büchi automata on infinite words, which are required for the modeling of liveness properties, optimal complementation constructions are quite complicated, as the subset construction is not sufficient. From a theoretical point of view, the problem is considered solved since 1988, when Safra came up with a determinization construction for Büchi automata, leading to a 2O(n log n) complementation construction, and Michel came up with a matching lower bound. A careful analysis, however, of the exact blow-up in Safra's and Michel's bounds reveals an exponential gap in the constants hiding in the O( ) notations: while the upper bound on the number of states in Safra's complementary automaton is n2n, Michel's lower bound involves only an n! blow up, which is roughly (n/e)n. The exponential gap exists also in more recent complementation constructions. In particular, the upper bound on the number of states in the complementation construction of Kupferman and Vardi, which avoids determinization, is (6n)n. This is in contrast with the case of automata on finite words, where the upper and lower bounds coincides. In this work we describe an improved complementation construction for nondeterministic Büchi automata and analyze its complexity. We show that the new construction results in an automaton with at most (0.96n)n states. While this leaves the problem about the exact blow up open, the gap is now exponentially smaller. From a practical point of view, our solution enjoys the simplicity of the construction of Kupferman and Vardi, and results in much smaller automata.


Author(s):  
HUAYUE ZHANG ◽  
LIHUA BAI

In this paper, we apply the completion of squares method to study the optimal investment problem under mean-variance criteria for an insurer. The insurer's risk process is modelled by a classical risk process that is perturbed by a standard fractional Brownian motion with Hurst parameter H ∈ (1/2, 1). By virtue of an auxiliary process, the efficient strategy and efficient frontier are obtained. Moreover, when H → 1/2+ the results converge to the corresponding (known) results for standard Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document