scholarly journals THERE ARE NO INTERMEDIATE STRUCTURES BETWEEN THE GROUP OF INTEGERS AND PRESBURGER ARITHMETIC

2018 ◽  
Vol 83 (1) ◽  
pp. 187-207 ◽  
Author(s):  
GABRIEL CONANT

AbstractWe show that if a first-order structure ${\cal M}$, with universe ℤ, is an expansion of (ℤ,+,0) and a reduct of (ℤ,+,<,0), then ${\cal M}$ must be interdefinable with (ℤ ,+,0) or (ℤ ,+,<,0).

2017 ◽  
Vol 82 (3) ◽  
pp. 1080-1105 ◽  
Author(s):  
KRZYSZTOF KRUPIŃSKI

AbstractFor a group G definable in a first order structure M we develop basic topological dynamics in the category of definable G-flows. In particular, we give a description of the universal definable G-ambit and of the semigroup operation on it. We find a natural epimorphism from the Ellis group of this flow to the definable Bohr compactification of G, that is to the quotient ${G^{\rm{*}}}/G_M^{{\rm{*}}00}$ (where G* is the interpretation of G in a monster model). More generally, we obtain these results locally, i.e., in the category of Δ-definable G-flows for any fixed set Δ of formulas of an appropriate form. In particular, we define local connected components $G_{{\rm{\Delta }},M}^{{\rm{*}}00}$ and $G_{{\rm{\Delta }},M}^{{\rm{*}}000}$, and show that ${G^{\rm{*}}}/G_{{\rm{\Delta }},M}^{{\rm{*}}00}$ is the Δ-definable Bohr compactification of G. We also note that some deeper arguments from [14] can be adapted to our context, showing for example that our epimorphism from the Ellis group to the Δ-definable Bohr compactification factors naturally yielding a continuous epimorphism from the Δ-definable generalized Bohr compactification to the Δ-definable Bohr compactification of G. Finally, we propose to view certain topological-dynamic and model-theoretic invariants as Polish structures which leads to some observations and questions.


2019 ◽  
Vol 84 (02) ◽  
pp. 632-663 ◽  
Author(s):  
ERAN ALOUF ◽  
CHRISTIAN D’ELBÉE

AbstractWe consider the structure $({\Bbb Z}, + ,0,|_{p_1 } , \ldots ,|_{p_n } )$, where $x|_p y$ means $v_p \left( x \right) \leqslant v_p \left( y \right)$ and vp is the p-adic valuation. We prove that this structure has quantifier elimination in a natural expansion of the language of abelian groups, and that it has dp-rank n. In addition, we prove that a first order structure with universe ${\Bbb Z}$ which is an expansion of $({\Bbb Z}, + ,0)$ and a reduct of $({\Bbb Z}, + ,0,|_p )$ must be interdefinable with one of them. We also give an alternative proof for Conant’s analogous result about $({\Bbb Z}, + ,0, < )$.


2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


1983 ◽  
Vol 48 (3) ◽  
pp. 564-569 ◽  
Author(s):  
J.B. Paris ◽  
C. Dimitracopoulos

The results in this paper were motivated by the following result due to R. Solovay.Theorem 1 (Solovay). Let M be a nonstandard model of Peano's first order axioms P and let I ⊂e M (i.e. ϕ ≠ ⊂ M and I is closed under < and successor). Then for each of the functions we can define J ⊆e I in ‹M, I› such that J is closed under that function. (∣x∣ denotes [log2(x)].)Proof. Just notice that the cuts defined byare successively closed under In view of Theorem 1, the following question was raised by R. Solovay: Can we define J ⊆ I in ‹M, I› such that J is closed under exponentiation? In Theorem 2 we show that the answer is “no”. Theorem 3 is based on Theorem 2 and extends the technique to cuts which are models of subsystems of P.To prove both theorems we shall need an estimate due to R. Parikh (see [1], especially the proof of Theorem 2.2a). For the sake of completeness, and also to introduce some notation we shall sketch Parikh's estimate in the next section. At all times we shall give the easiest estimates which still work rather than the sharpest ones.


1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.


2007 ◽  
pp. 79-83
Author(s):  
Predrag Tanovic

An infinite first-order structure is minimal if its each definable subset is either finite or co-finite. We formulate three questions concerning order properties of minimal structures which are motivated by Pillay?s Conjecture (stating that a countable first-order structure must have infinitely many countable, pairwise non-isomorphic elementary extensions).


Author(s):  
P. P. N. de Groen

SynopsisWe study the asymptotic behaviour for ɛ→+0 of the solution Φ of the elliptic boundary value problemis a bounded domain in ℝ2, 2 is asecond-order uniformly elliptic operator, 1 is a first-order operator, which has critical points in the interior of , i.e. points at which the coefficients of the first derivatives vanish, ɛ and μ are real parameters and h is a smooth function on . We construct firstorder approximations to Φ for all types of nondegenerate critical points of 1 and prove their validity under some restriction on the range of μ.In a number of cases we get internal layers of nonuniformity (which extend to the boundary in the saddle-point case) near the critical points; this depends on the position of the characteristics of 1 and their direction. At special values of the parameter μ outside the range in which we could prove validity we observe ‘resonance’, a sudden displacement of boundary layers; these points are connected with the spectrum of the operator ɛ2 + 1 subject to boundary conditions of Dirichlet type.


Sign in / Sign up

Export Citation Format

Share Document