A note on the undefinability of cuts

1983 ◽  
Vol 48 (3) ◽  
pp. 564-569 ◽  
Author(s):  
J.B. Paris ◽  
C. Dimitracopoulos

The results in this paper were motivated by the following result due to R. Solovay.Theorem 1 (Solovay). Let M be a nonstandard model of Peano's first order axioms P and let I ⊂e M (i.e. ϕ ≠ ⊂ M and I is closed under < and successor). Then for each of the functions we can define J ⊆e I in ‹M, I› such that J is closed under that function. (∣x∣ denotes [log2(x)].)Proof. Just notice that the cuts defined byare successively closed under In view of Theorem 1, the following question was raised by R. Solovay: Can we define J ⊆ I in ‹M, I› such that J is closed under exponentiation? In Theorem 2 we show that the answer is “no”. Theorem 3 is based on Theorem 2 and extends the technique to cuts which are models of subsystems of P.To prove both theorems we shall need an estimate due to R. Parikh (see [1], especially the proof of Theorem 2.2a). For the sake of completeness, and also to introduce some notation we shall sketch Parikh's estimate in the next section. At all times we shall give the easiest estimates which still work rather than the sharpest ones.

2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.


Author(s):  
P. P. N. de Groen

SynopsisWe study the asymptotic behaviour for ɛ→+0 of the solution Φ of the elliptic boundary value problemis a bounded domain in ℝ2, 2 is asecond-order uniformly elliptic operator, 1 is a first-order operator, which has critical points in the interior of , i.e. points at which the coefficients of the first derivatives vanish, ɛ and μ are real parameters and h is a smooth function on . We construct firstorder approximations to Φ for all types of nondegenerate critical points of 1 and prove their validity under some restriction on the range of μ.In a number of cases we get internal layers of nonuniformity (which extend to the boundary in the saddle-point case) near the critical points; this depends on the position of the characteristics of 1 and their direction. At special values of the parameter μ outside the range in which we could prove validity we observe ‘resonance’, a sudden displacement of boundary layers; these points are connected with the spectrum of the operator ɛ2 + 1 subject to boundary conditions of Dirichlet type.


2018 ◽  
Vol 83 (3) ◽  
pp. 1204-1216 ◽  
Author(s):  
OLGA KHARLAMPOVICH ◽  
ALEXEI MYASNIKOV

AbstractLet R be a commutative integral unital domain and L a free noncommutative Lie algebra over R. In this article we show that the ring R and its action on L are 0-interpretable in L, viewed as a ring with the standard ring language $+ , \cdot ,0$. Furthermore, if R has characteristic zero then we prove that the elementary theory $Th\left( L \right)$ of L in the standard ring language is undecidable. To do so we show that the arithmetic ${\Bbb N} = \langle {\Bbb N}, + , \cdot ,0\rangle $ is 0-interpretable in L. This implies that the theory of $Th\left( L \right)$ has the independence property. These results answer some old questions on model theory of free Lie algebras.


2019 ◽  
Vol 25 (2) ◽  
pp. 208-212 ◽  
Author(s):  
JOUKO VÄÄNÄNEN

AbstractWe show that if $(M,{ \in _1},{ \in _2})$ satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ${ \in _1}$ and also when the membership relation is ${ \in _2}$, and in both cases the formulas are allowed to contain both ${ \in _1}$ and ${ \in _2}$, then $\left( {M, \in _1 } \right) \cong \left( {M, \in _2 } \right)$, and the isomorphism is definable in $(M,{ \in _1},{ \in _2})$. This extends Zermelo’s 1930 theorem in [6].


2018 ◽  
Vol 83 (04) ◽  
pp. 1595-1609 ◽  
Author(s):  
STEVEN GIVANT ◽  
HAJNAL ANDRÉKA

AbstractGivant [6] generalized the notion of an atomic pair-dense relation algebra from Maddux [13] by defining the notion of a measurable relation algebra, that is to say, a relation algebra in which the identity element is a sum of atoms that can be measured in the sense that the “size” of each such atom can be defined in an intuitive and reasonable way (within the framework of the first-order theory of relation algebras). In Andréka--Givant [2], a large class of examples of such algebras is constructed from systems of groups, coordinated systems of isomorphisms between quotients of the groups, and systems of cosets that are used to “shift” the operation of relative multiplication. In Givant--Andréka [8], it is shown that the class of these full coset relation algebras is adequate to the task of describing all measurable relation algebras in the sense that every atomic and complete measurable relation algebra is isomorphic to a full coset relation algebra.Call an algebra $\mathfrak{A}$ a coset relation algebra if $\mathfrak{A}$ is embeddable into some full coset relation algebra. In the present article, it is shown that the class of coset relation algebras is equationally axiomatizable (that is to say, it is a variety), but that no finite set of sentences suffices to axiomatize the class (that is to say, the class is not finitely axiomatizable).


Author(s):  
A. M. W. Glass ◽  
Yuri Gurevich ◽  
W. Charles Holland ◽  
Saharon Shelah

Classifying (unordered) sets by the elementary (first order) properties of their automorphism groups was undertaken in (7), (9) and (11). For example, if Ω is a set whose automorphism group, S(Ω), satisfiesthen Ω has cardinality at most ℵ0 and conversely (see (7)). We are interested in classifying homogeneous totally ordered sets (homogeneous chains, for short) by the elementary properties of their automorphism groups. (Note that we use ‘homogeneous’ here to mean that the automorphism group is transitive.) This study was begun in (4) and (5). For any set Ω, S(Ω) is primitive (i.e. has no congruences). However, the automorphism group of a homogeneous chain need not be o-primitive (i.e. it may have convex congruences). Fortunately, ‘o-primitive’ is a property that can be captured by a first order sentence for automorphisms of homogeneous chains. Hence our general problem falls naturally into two parts. The first is to classify (first order) the homogeneous chains whose automorphism groups are o-primitive; the second is to determine how the o-primitive components are related for arbitrary homogeneous chains whose automorphism groups are elementarily equivalent.


1978 ◽  
Vol 43 (1) ◽  
pp. 113-117
Author(s):  
J. B. Paris

Let θ(ν) be a formula in the first-order language of arithmetic and letIn this note we study the relationship between the schemas I′ and I+.Our interest in I+ lies in the fact that it is ostensibly a more reasonable schema than I′. For, if we believe the hypothesis of I+(θ) then to verify θ(n) only requires at most 2log2(n) steps, whereas assuming the hypothesis of I′(θ) we require n steps to verify θ(n). In the physical world naturally occurring numbers n rarely exceed 10100. For such n applying 2log2(n) steps is quite feasible whereas applying n steps may well not be.Of course this is very much an anthropomorphic argument so we would expect that it would be most likely to be valid when we restrict our attention to relatively simple formulas θ. We shall show that when restricted to open formulas I+ does not imply I′ but that this fails for the classes Σn, Πn, n ≥ 0.We shall work in PA−, where PA− consists of Peano's Axioms less induction together with∀u, w(u + w = w + u ∧ u · w = w · u),∀u, w, t ((u + w) + t = u + (w + t) ∧ (u · w) · t = u · (w · t)),∀u, w, t(u · (w + t) = u · w + u · t),∀u, w(u ≤ w ↔ ∃t(u + t = w)),∀u, w(u ≤ w ∨ w ≤ u),∀u, w, t(u + w = u + t → w = t).The reasons for working with PA− rather than Peano's Axioms less induction is that our additional axioms, whilst intuitively reasonable, will not necessarily follow from some of the weaker forms of I+ which we shall be considering. Of course PA− still contains those Peano Axioms which define + andNotice that, trivially, PA− ⊦ I′(θ) → I+(θ) for any formula θ.


Sign in / Sign up

Export Citation Format

Share Document