scholarly journals On the integration processes of A. Huťa

1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.

2014 ◽  
Vol 90 (3) ◽  
pp. 457-468
Author(s):  
SUQIN GE ◽  
WANYI WANG ◽  
QIUXIA YANG

AbstractIn this paper, we consider the dependence of eigenvalues of sixth-order boundary value problems on the boundary. We show that the eigenvalues depend not only continuously but also smoothly on boundary points, and that the derivative of the$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$th eigenvalue as a function of an endpoint satisfies a first-order differential equation. In addition, we prove that as the length of the interval shrinks to zero all higher eigenvalues of such boundary value problems march off to plus infinity. This is also true for the first (that is, lowest) eigenvalue.


1963 ◽  
Vol 3 (2) ◽  
pp. 185-201 ◽  
Author(s):  
J. C. Butcher

We consider a set of η first order simultaneous differential equations in the dependent variables y1, y2, …, yn and the independent variable x ⋮ No loss of gernerality results from taking the functions f1, f2, …, fn to be independent of x, for if this were not so an additional dependent variable yn+1, anc be introduced which always equals x and thus satisfies the differential equation


2018 ◽  
Vol 106 (2) ◽  
pp. 543-562
Author(s):  
Olusheye A. Akinfenwa ◽  
Solomon A. Okunuga ◽  
Blessing I. Akinnukawe ◽  
Uthman O. Rufai ◽  
Ridwanulahi I. Abdulganiy

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2000 ◽  
Vol 15 (28) ◽  
pp. 4477-4498 ◽  
Author(s):  
P. M. LLATAS ◽  
A. V. RAMALLO ◽  
J. M. SÁNCHEZ DE SANTOS

We analyze the world volume solitons of a D3-brane probe in the background of parallel (p, q) five-branes. The D3-brane is embedded along the directions transverse to the five-branes of the background. By using the S duality invariance of the D3-brane, we find a first-order differential equation whose solutions saturate an energy bound. The SO(3) invariant solutions of this equation are found analytically. They represent world volume solitons which can be interpreted as formed by parallel (-q, p) strings emanating from the D3-brane world volume. It is shown that these configurations are 1/4 supersymmetric and provide a world volume realization of the Hanany–Witten effect.


1964 ◽  
Vol 4 (2) ◽  
pp. 179-194 ◽  
Author(s):  
J. C. Butcher

An (explicit) Runge-Kutta process is a means of numerically solving the differential equation , at the point x = x0+h, where y, f may be vectors.


Sign in / Sign up

Export Citation Format

Share Document