scholarly journals TRUTH AND FEASIBLE REDUCIBILITY

2019 ◽  
Vol 85 (1) ◽  
pp. 367-421
Author(s):  
ALI ENAYAT ◽  
MATEUSZ ŁEŁYK ◽  
BARTOSZ WCISŁO

AbstractLet ${\cal T}$ be any of the three canonical truth theories CT− (compositional truth without extra induction), FS− (Friedman–Sheard truth without extra induction), or KF− (Kripke–Feferman truth without extra induction), where the base theory of ${\cal T}$ is PA (Peano arithmetic). We establish the following theorem, which implies that ${\cal T}$ has no more than polynomial speed-up over PA.Theorem.${\cal T}$is feasibly reducible to PA, in the sense that there is a polynomial time computable function f such that for every${\cal T}$-proof π of an arithmetical sentence ϕ, f (π) is a PA-proof of ϕ.

2019 ◽  
Vol 84 (02) ◽  
pp. 849-869 ◽  
Author(s):  
EVGENY KOLMAKOV ◽  
LEV BEKLEMISHEV

AbstractA formula φ is called n-provable in a formal arithmetical theory S if φ is provable in S together with all true arithmetical ${{\rm{\Pi }}_n}$-sentences taken as additional axioms. While in general the set of all n-provable formulas, for a fixed $n > 0$, is not recursively enumerable, the set of formulas φ whose n-provability is provable in a given r.e. metatheory T is r.e. This set is deductively closed and will be, in general, an extension of S. We prove that these theories can be naturally axiomatized in terms of progressions of iterated local reflection principles. In particular, the set of provably 1-provable sentences of Peano arithmetic $PA$ can be axiomatized by ${\varepsilon _0}$ times iterated local reflection schema over $PA$. Our characterizations yield additional information on the proof-theoretic strength of these theories (w.r.t. various measures of it) and on their axiomatizability. We also study the question of speed-up of proofs and show that in some cases a proof of n-provability of a sentence can be much shorter than its proof from iterated reflection principles.


2017 ◽  
Vol 10 (3) ◽  
pp. 455-480 ◽  
Author(s):  
BARTOSZ WCISŁO ◽  
MATEUSZ ŁEŁYK

AbstractWe prove that the theory of the extensional compositional truth predicate for the language of arithmetic with Δ0-induction scheme for the truth predicate and the full arithmetical induction scheme is not conservative over Peano Arithmetic. In addition, we show that a slightly modified theory of truth actually proves the global reflection principle over the base theory.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


2014 ◽  
Vol 79 (2) ◽  
pp. 496-525 ◽  
Author(s):  
SAMUEL R. BUSS ◽  
LESZEK ALEKSANDER KOŁODZIEJCZYK ◽  
NEIL THAPEN

AbstractWe study the long-standing open problem of giving $\forall {\rm{\Sigma }}_1^b$ separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the $\forall {\rm{\Sigma }}_1^b$ Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FPNP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of $T_2^1$ augmented with the surjective weak pigeonhole principle for polynomial time functions.


1984 ◽  
Vol 49 (3) ◽  
pp. 818-829 ◽  
Author(s):  
J. P. Jones ◽  
Y. V. Matijasevič

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.


2018 ◽  
Vol 83 (3) ◽  
pp. 1229-1246
Author(s):  
TAISHI KURAHASHI

AbstractLet T and U be any consistent theories of arithmetic. If T is computably enumerable, then the provability predicate $P{r_\tau }\left( x \right)$ of T is naturally obtained from each ${{\rm{\Sigma }}_1}$ definition $\tau \left( v \right)$ of T. The provability logic $P{L_\tau }\left( U \right)$ of τ relative to U is the set of all modal formulas which are provable in U under all arithmetical interpretations where □ is interpreted by $P{r_\tau }\left( x \right)$. It was proved by Beklemishev based on the previous studies by Artemov, Visser, and Japaridze that every $P{L_\tau }\left( U \right)$ coincides with one of the logics $G{L_\alpha }$, ${D_\beta }$, ${S_\beta }$, and $GL_\beta ^ -$, where α and β are subsets of ω and β is cofinite.We prove that if U is a computably enumerable consistent extension of Peano Arithmetic and L is one of $G{L_\alpha }$, ${D_\beta }$, ${S_\beta }$, and $GL_\beta ^ -$, where α is computably enumerable and β is cofinite, then there exists a ${{\rm{\Sigma }}_1}$ definition $\tau \left( v \right)$ of some extension of $I{{\rm{\Sigma }}_1}$ such that $P{L_\tau }\left( U \right)$ is exactly L.


1972 ◽  
Vol 37 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Albert R. Meyer ◽  
Patrick C. Fischer

The complexity of a computable function can be measured by considering the time or space required to compute its values. Particular notions of time and space arising from variants of Turing machines have been investigated by R. W. Ritchie [14], Hartmanis and Stearns [8], and Arbib and Blum [1], among others. General properties of such complexity measures have been characterized axiomatically by Rabin [12], Blum [2], Young [16], [17], and McCreight and Meyer [10].In this paper the speed-up and super-speed-up theorems of Blum [2] are generalized to speed-up by arbitrary total effective operators. The significance of such theorems is that one cannot equate the complexity of a computable function with the running time of its fastest program, for the simple reason that there are computable functions which in a very strong sense have no fastest programs.Let φi be the ith partial recursive function of one variable in a standard Gödel numbering of partial recursive functions. A family Φ0, Φ1, … of functions of one variable is called a Blum measure on computation providing(1) domain (φi) = domain (Φi), and(2) the predicate [Φi(x) = m] is recursive in i, x and m.Typical interpretations of Φi(x) are the number of steps required by the ith Turing machine (in a standard enumeration of Turing machines) to converge on input x, the space or number of tape squares required by the ith Turing machine to converge on input x (with the convention that Φi(x) is undefined even if the machine fails to halt in a finite loop), and the length of the shortest derivation of the value of φi(x) from the ith set of recursive equations.


1989 ◽  
Vol 115 ◽  
pp. 165-183 ◽  
Author(s):  
C.T. Chong

This work is inspired by the recent paper of Mytilinaios and Slaman [9] on the infinite injury priority method. It may be considered to fall within the general program of the study of reverse recursion theory: What axioms of Peano arithmetic are required or sufficient to prove theorems in recursion theory? Previous contributions to this program, especially with respect to the finite and infinite injury priority methods, can be found in the works of Groszek and Mytilinaios [4], Groszek and Slaman [5], Mytilinaios [8], Slaman and Woodin [10]. Results of [4] and [9], for example, together pinpoint the existence of an incomplete, nonlow r.e. degree to be provable only within some fragment of Peano arithmetic at least as strong as P- + IΣ2. Indeed an abstract principle on infinite strategies, such as that on the construction of an incomplete high r.e. degree, was introduced in [4] and shown to be equivalent to Σ2 induction over the base theory P- + IΣ0 of Peano arithmetic.


2018 ◽  
Vol 83 (04) ◽  
pp. 1501-1511 ◽  
Author(s):  
ATHAR ABDUL-QUADER

AbstractSimpson [6] showed that every countable model ${\cal M} \models PA$ has an expansion $\left( {{\cal M},X} \right) \models P{A^{\rm{*}}}$ that is pointwise definable. A natural question is whether, in general, one can obtain expansions of a nonprime model in which the definable elements coincide with those of the underlying model. Enayat [1] showed that this is impossible by proving that there is ${\cal M} \models PA$ such that for each undefinable class X of ${\cal M}$, the expansion $\left( {{\cal M},X} \right)$ is pointwise definable. We call models with this property Enayat models. In this article, we study Enayat models and show that a model of $PA$ is Enayat if it is countable, has no proper cofinal submodels and is a conservative extension of all of its elementary cuts. We then show that, for any countable linear order γ, if there is a model ${\cal M}$ such that $Lt\left( {\cal M} \right) \cong \gamma$, then there is an Enayat model ${\cal M}$ such that $Lt\left( {\cal M} \right) \cong \gamma$.


1982 ◽  
Vol 47 (4) ◽  
pp. 721-733 ◽  
Author(s):  
Ulf R. Schmerl

The ω-rule,with the meaning “if the formula A(n) is provable for all n, then the formula ∀xA(x) is provable”, has a certain formal similarity with a uniform reflection principle saying “if A(n) is provable for all n, then ∀xA(x) is true”. There are indeed some hints in the literature that uniform reflection has sometimes been understood as a “formalized ω-rule” (cf. for example S. Feferman [1], G. Kreisel [3], G. H. Müller [7]). This similarity has even another aspect: replacing the induction rule or scheme in Peano arithmetic PA by the ω-rule leads to a complete and sound system PA∞, where each true arithmetical statement is provable. In [2] Feferman showed that an equivalent system can be obtained by erecting on PA a transfinite progression of formal systems PAα based on iterations of the uniform reflection principle according to the following scheme:Then T = (∪dЄ, PAd, being Kleene's system of ordinal notations, is equivalent to PA∞. Of course, T cannot be an axiomatizable theory.


Sign in / Sign up

Export Citation Format

Share Document