scholarly journals FRAGMENTS OF APPROXIMATE COUNTING

2014 ◽  
Vol 79 (2) ◽  
pp. 496-525 ◽  
Author(s):  
SAMUEL R. BUSS ◽  
LESZEK ALEKSANDER KOŁODZIEJCZYK ◽  
NEIL THAPEN

AbstractWe study the long-standing open problem of giving $\forall {\rm{\Sigma }}_1^b$ separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the $\forall {\rm{\Sigma }}_1^b$ Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FPNP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of $T_2^1$ augmented with the surjective weak pigeonhole principle for polynomial time functions.

2009 ◽  
Vol 74 (3) ◽  
pp. 829-860 ◽  
Author(s):  
Emil Jeřábek

AbstractWe show how to formalize approximate counting via hash functions in subsystems of bounded arithmetic, using variants of the weak pigeonhole principle. We discuss several applications, including a proof of the tournament principle, and an improvement on the known relationship of the collapse of the bounded arithmetic hierarchy to the collapse of the polynomial-time hierarchy.


1998 ◽  
Vol 63 (3) ◽  
pp. 1095-1115 ◽  
Author(s):  
Mario Chiari ◽  
Jan Krajíček

AbstractWe investigate the possibility to characterize (multi)functions that are-definable with smalli(i= 1, 2, 3) in fragments of bounded arithmeticT2in terms of natural search problems defined over polynomial-time structures. We obtain the following results:(1) A reformulation of known characterizations of (multi)functions that areand-definable in the theoriesand.(2) New characterizations of (multi)functions that areand-definable in the theory.(3) A new non-conservation result: the theoryis not-conservative over the theory.To prove that the theoryis not-conservative over the theory, we present two examples of a-principle separating the two theories:(a) the weak pigeonhole principle WPHP(a2,f, g) formalizing that no functionfis a bijection betweena2andawith the inverseg,(b) the iteration principle Iter(a, R, f) formalizing that no functionfdefined on a strict partial order ({0,…, a},R) can have increasing iterates.


2007 ◽  
Vol 72 (3) ◽  
pp. 959-993 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop approximate counting of sets definable by Boolean circuits in bounded arithmetic using the dual weak pigeonhole principle (dWPHP(PV)), as a generalization of results from [15]. We discuss applications to formalization of randomized complexity classes (such as BPP, APP, MA, AM) in PV1 + dWPHP(PV).


1984 ◽  
Vol 49 (3) ◽  
pp. 818-829 ◽  
Author(s):  
J. P. Jones ◽  
Y. V. Matijasevič

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.


2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.


1987 ◽  
Vol 102 (3) ◽  
pp. 553-559 ◽  
Author(s):  
M. Aslam Chaudhry ◽  
J. N. Pandey

AbstractLet D(R) be the Schwartz space of C∞ functions with compact support on R and let H(D) be the space of all C∞ functions defined on R for which every element is the Hilbert transform of an element in D(R), i.e.where the integral is defined in the Cauchy principal-value sense. Introducing an appropriate topology in H(D), Pandey [3] defined the Hilbert transform Hf of f ∈ (D(R))′ as an element of (H(D))′ by the relationand then with an appropriate interpretation he proved that.In this paper we give an intrinsic description of the space H(D) and its topology, thereby providing a solution to an open problem posed by Pandey ([4], p. 90).


2012 ◽  
Vol 142 (5) ◽  
pp. 1051-1069 ◽  
Author(s):  
Baishun Lai ◽  
Zhuoran Du

Let λ* > 0 denote the largest possible value of λ such that the systemhas a solution, where $\mathbb{B}$ is the unit ball in ℝn centred at the origin, p > 1 and n is the exterior unit normal vector. We show that for λ = λ* this problem possesses a unique weak solution u*, called the extremal solution. We prove that u* is singular when n ≥ 13 for p large enough and actually solve part of the open problem which Dávila et al. left unsolved.


2000 ◽  
Vol 65 (3) ◽  
pp. 1338-1346 ◽  
Author(s):  
Gaisi Takeuti

In [1], S. Buss introduced the systems of Bounded Arithmetic for (i = 0,1,2,…) which has a close relationship to classes in polynomial hierarchy.In [4], we defined a very special kind of proof-predicate Prfi for which gives detailed information on bounds of free variables used in the proof. There we also introduced infinitely many Gödel sentences for Prfi (k = 0, 1, 2, …) and showed that the properties of Prfi and are closely related to the P ≠ NP problem. Then we presented many conjectures on Prfi and which imply P ≠ NP.Now in [2], Feferman emphasized that the arithmetization of metamathematics must be carried out intensionally. Bounded Arithmetic is a very interesting case in this sense.In this paper, we also introduce the usual proof-predicate PRFi for and infinitely many Gödel sentences for PRFi(k= 0, 1, 2, …). Then we show that (Prfi, )and (PRFi, ) form a good contrast, this contrast is also closely related to the P ≠ NP problem, and present more conjectures which imply P ≠ NP.As in [4] we define to be the following extension of Buss' original .(1) We add finitely many function symbols which express polynomial time computable functions to Buss' original language of .(2) All basic axioms on function symbols and ≤ can be expressed by initial sequents without logical symbols.


1995 ◽  
Vol 60 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Aleksandar Ignjatović

AbstractIn this paper we characterize the well-known computational complexity classes of the polynomial time hierarchy as classes of provably recursive functions (with graphs of suitable bounded complexity) of some second order theories with weak comprehension axiom schemas but without any induction schemas (Theorem 6). We also find a natural relationship between our theories and the theories of bounded arithmetic (Lemmas 4 and 5). Our proofs use a technique which enables us to “speed up” induction without increasing the bounded complexity of the induction formulas. This technique is also used to obtain an interpretability result for the theories of bounded arithmetic (Theorem 4).


Sign in / Sign up

Export Citation Format

Share Document