scholarly journals COMPUTABILITY THEORY, NONSTANDARD ANALYSIS, AND THEIR CONNECTIONS

2019 ◽  
Vol 84 (4) ◽  
pp. 1422-1465 ◽  
Author(s):  
DAG NORMANN ◽  
SAM SANDERS

AbstractWe investigate the connections between computability theory and Nonstandard Analysis. In particular, we investigate the two following topics and show that they are intimately related.(T.1) A basic property of Cantor space$2^ $ is Heine–Borel compactness: for any open covering of $2^ $, there is a finite subcovering. A natural question is: How hard is it to compute such a finite subcovering? We make this precise by analysing the complexity of so-called fan functionals that given any $G:2^ \to $, output a finite sequence $\langle f_0 , \ldots ,f_n \rangle $ in $2^ $ such that the neighbourhoods defined from $\overline {f_i } G\left( {f_i } \right)$ for $i \le n$ form a covering of $2^ $.(T.2) A basic property of Cantor space in Nonstandard Analysis is Abraham Robinson’s nonstandard compactness, i.e., that every binary sequence is “infinitely close” to a standard binary sequence. We analyse the strength of this nonstandard compactness property of Cantor space, compared to the other axioms of Nonstandard Analysis and usual mathematics.Our study of (T.1) yields exotic objects in computability theory, while (T.2) leads to surprising results in Reverse Mathematics. We stress that (T.1) and (T.2) are highly intertwined, i.e., our study is holistic in nature in that results in computability theory yield results in Nonstandard Analysis and vice versa.

2016 ◽  
Vol 22 (2) ◽  
pp. 249-286 ◽  
Author(s):  
LAURENT BIENVENU ◽  
CHRISTOPHER P. PORTER

AbstractA set of infinite binary sequences ${\cal C} \subseteq 2$ℕ is negligible if there is no partial probabilistic algorithm that produces an element of this set with positive probability. The study of negligibility is of particular interest in the context of ${\rm{\Pi }}_1^0 $ classes. In this paper, we introduce the notion of depth for ${\rm{\Pi }}_1^0 $ classes, which is a stronger form of negligibility. Whereas a negligible ${\rm{\Pi }}_1^0 $ class ${\cal C}$ has the property that one cannot probabilistically compute a member of ${\cal C}$ with positive probability, a deep ${\rm{\Pi }}_1^0 $ class ${\cal C}$ has the property that one cannot probabilistically compute an initial segment of a member of ${\cal C}$ with high probability. That is, the probability of computing a length n initial segment of a deep ${\rm{\Pi }}_1^0 $ class converges to 0 effectively in n.We prove a number of basic results about depth, negligibility, and a variant of negligibility that we call tt-negligibility. We provide a number of examples of deep ${\rm{\Pi }}_1^0 $ classes that occur naturally in computability theory and algorithmic randomness. We also study deep classes in the context of mass problems, examine the relationship between deep classes and certain lowness notions in algorithmic randomness, and establish a relationship between members of deep classes and the amount of mutual information with Chaitin’s Ω.


2001 ◽  
Vol 66 (3) ◽  
pp. 1303-1320 ◽  
Author(s):  
Jan Kraszewski

AbstractWe define a class of productiveσ-ideals of subsets of the Cantor space 2ω and observe that both σ-ideals of meagre sets and of null sets are in this class. From every productive σ-ideal we produce a σ-ideal of subsets of the generalized Cantor space 2κ. In particular, starting from meagre sets and null sets in 2ω we obtain meagre sets and null sets in 2ω, respectively. Then we investigate additivity, covering number, uniformity and cofinality of . For example, we show thatOur results generalizes those from [5].


1967 ◽  
Vol 19 ◽  
pp. 1153-1178 ◽  
Author(s):  
G. F. D. Duff

The decreasing rearrangement of a finite sequence a1, a2, … , an of real numbers is a second sequence aπ(1), aπ(2), … , aπ(n), where π(l), π(2), … , π(n) is a permutation of 1, 2, … , n and(1, p. 260). The kth term of the rearranged sequence will be denoted by . Thus the terms of the rearranged sequence correspond to and are equal to those of the given sequence ak, but are arranged in descending (non-increasing) order.


1932 ◽  
Vol 27 ◽  
pp. ix-xiii ◽  
Author(s):  
H. W. Turnbull

When a student first approaches the theory of infinite continued fractions a natural question that suggests itself is how to evaluate the expression


Author(s):  
J. M. Hammersley

Let G be an infinite partially directed graph of finite outgoing degree. Thus G consists of an infinite set of vertices, together with a set of edges between certain prescribed pairs of vertices. Each edge may be directed or undirected, and the number of edges from (but not necessarily to) any given vertex is always finite (though possibly unbounded). A path on G from a vertex V1 to a vertex Vn (if such a path exists) is a finite sequence of alternate edges and vertices of the form E12, V2, E23, V3, …, En − 1, n, Vn such that Ei, i + 1 is an edge connecting Vi and Vi + 1 (and in the direction from Vi to Vi + 1 if that edge happens to be directed). In mixed Bernoulli percolation, each vertex Vi carries a random variable di, and each edge Eij carries a random variable dij. All these random variables di and dij are mutually independent, and take only the values 0 or 1; the di take the value 1 with probability p, while the dij take the value 1 with probability p. A path is said to be open if and only if all the random variables carried by all its edges and all its vertices assume the value 1. Let S be a given finite set of vertices, called the source set; and let T be the set of all vertices such that there exists at least one open path from some vertex of S to each vertex of T. (We imagine that fluid, supplied to all the source vertices, can flow along any open path; and thus T is the random set of vertices eventually wetted by the fluid). The percolation probabilityis defined to be the probability that T is an infinite set.


1958 ◽  
Vol 23 (2) ◽  
pp. 149-154 ◽  
Author(s):  
C. C. Chang ◽  
Anne C. Morel

In 1951, Horn obtained a sufficient condition for an arithmetical class to be closed under direct product. A natural question which arose was whether Horn's condition is also necessary. We obtain a negative answer to that question.We shall discuss relational systems of the formwhere A and R are non-empty sets; each element of R is an ordered triple 〈a, b, c〉, with a, b, c ∈ A.1 If the triple 〈a, b, c〉 belongs to the relation R, we write R(a, b, c); if 〈a, b, c〉 ∉ R, we write (a, b, c). If x0, x1 and x2 are variables, then R(x0, x1, x2) and x0 = x1 are predicates. The expressions (x0, x1, x2) and x0 ≠ x1 will be referred to as negations of predicates.We speak of α1, …, αn as terms of the disjunction α1 ∨ … ∨ αn and as factors of the conjunction α1 ∧ … ∧ αn. A sentence (open, closed or neither) of the formwhere each Qi (if there be any) is either the universal or the existential quantifier and each αi, l is either a predicate or a negation of a predicate, is said to be in prenex disjunctive normal form.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


Author(s):  
G. Brown ◽  
W. Moran

Measures, μ which can be realized as an infinite convolutionwhere each measure μn is a discrete measure, arise naturally in many parts of analysis and number theory (see (15)). The basic property of these measures is ‘purity’; i.e. such a measure μ 1must be absolutely continuous, continuous and singular, or discrete.


2018 ◽  
Vol 83 (04) ◽  
pp. 1501-1511 ◽  
Author(s):  
ATHAR ABDUL-QUADER

AbstractSimpson [6] showed that every countable model ${\cal M} \models PA$ has an expansion $\left( {{\cal M},X} \right) \models P{A^{\rm{*}}}$ that is pointwise definable. A natural question is whether, in general, one can obtain expansions of a nonprime model in which the definable elements coincide with those of the underlying model. Enayat [1] showed that this is impossible by proving that there is ${\cal M} \models PA$ such that for each undefinable class X of ${\cal M}$, the expansion $\left( {{\cal M},X} \right)$ is pointwise definable. We call models with this property Enayat models. In this article, we study Enayat models and show that a model of $PA$ is Enayat if it is countable, has no proper cofinal submodels and is a conservative extension of all of its elementary cuts. We then show that, for any countable linear order γ, if there is a model ${\cal M}$ such that $Lt\left( {\cal M} \right) \cong \gamma$, then there is an Enayat model ${\cal M}$ such that $Lt\left( {\cal M} \right) \cong \gamma$.


Sign in / Sign up

Export Citation Format

Share Document