Properties of ideals on the generalized Cantor spaces
AbstractWe define a class of productiveσ-ideals of subsets of the Cantor space 2ω and observe that both σ-ideals of meagre sets and of null sets are in this class. From every productive σ-ideal we produce a σ-ideal of subsets of the generalized Cantor space 2κ. In particular, starting from meagre sets and null sets in 2ω we obtain meagre sets and null sets in 2ω, respectively. Then we investigate additivity, covering number, uniformity and cofinality of . For example, we show thatOur results generalizes those from [5].
1969 ◽
Vol 27
◽
pp. 160-161
1983 ◽
Vol 41
◽
pp. 708-709
1974 ◽
Vol 32
◽
pp. 436-437
1978 ◽
Vol 36
(1)
◽
pp. 548-549
◽
1978 ◽
Vol 36
(1)
◽
pp. 540-541
1978 ◽
Vol 36
(1)
◽
pp. 456-457
1988 ◽
Vol 46
◽
pp. 218-219
1978 ◽
Vol 36
(1)
◽
pp. 176-177
Keyword(s):
1972 ◽
Vol 30
◽
pp. 398-399
Keyword(s):