On closure under direct product

1958 ◽  
Vol 23 (2) ◽  
pp. 149-154 ◽  
Author(s):  
C. C. Chang ◽  
Anne C. Morel

In 1951, Horn obtained a sufficient condition for an arithmetical class to be closed under direct product. A natural question which arose was whether Horn's condition is also necessary. We obtain a negative answer to that question.We shall discuss relational systems of the formwhere A and R are non-empty sets; each element of R is an ordered triple 〈a, b, c〉, with a, b, c ∈ A.1 If the triple 〈a, b, c〉 belongs to the relation R, we write R(a, b, c); if 〈a, b, c〉 ∉ R, we write (a, b, c). If x0, x1 and x2 are variables, then R(x0, x1, x2) and x0 = x1 are predicates. The expressions (x0, x1, x2) and x0 ≠ x1 will be referred to as negations of predicates.We speak of α1, …, αn as terms of the disjunction α1 ∨ … ∨ αn and as factors of the conjunction α1 ∧ … ∧ αn. A sentence (open, closed or neither) of the formwhere each Qi (if there be any) is either the universal or the existential quantifier and each αi, l is either a predicate or a negation of a predicate, is said to be in prenex disjunctive normal form.

1951 ◽  
Vol 16 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Alfred Horn

It is well known that certain sentences corresponding to similar algebras are invariant under direct union; that is, are true of the direct union when true of each factor algebra. An axiomatizable class of similar algebras, such as the class of groups, is closed under direct union when each of its axioms is invariant. In this paper we shall determine a wide class of invariant sentences. We shall also be concerned with determining sentences which are true of a direct union provided they are true of some factor algebra. In the case where all the factor algebras are the same, a further result is obtained. In §2 it will be shown that these criteria are the only ones of their kind. Lemma 7 below may be of some independent interest.We adopt the terminology and notation of McKinsey with the exception that the sign · will be used for conjunction. Expressions of the form ∼∊, where ∊ is an equation, will be called inequalities. In accordance with the analogy between conjunction and disjunction with product and sum respectively, we shall call α1, …, αn the terms of the disjunctionand the factors of the conjunctionEvery closed sentence is equivalent to a sentence in prenez normal form,where x1, …, xm distinct individual variables, Q1, …, Qm are quantifiers, and the matrix S is an open sentence in which each of the variables x1, …, xm actually occurs. The sentence S may be written in either disjunctive normal form:where αi,j is either an equation or an inequality, or in conjunctive normal form:.


1960 ◽  
Vol 25 (1) ◽  
pp. 1-26 ◽  
Author(s):  
H. Jerome Keisler

IntroductionWe shall prove the following theorem, which gives a necessary and sufficient condition for an elementary class to be characterized by a set of sentences having a prescribed number of alternations of quantifiers. A finite sequence of relational systems is said to be a sandwich of order n if each is an elementary extension of (i ≦ n—2), and each is an extension of (i ≦ n—2). If K is an elementary class, then the statements (i) and (ii) are equivalent for each fixed natural number n.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.


2004 ◽  
Vol 14 (09) ◽  
pp. 3337-3345 ◽  
Author(s):  
JIANPING PENG ◽  
DUO WANG

A sufficient condition for the uniqueness of the Nth order normal form is provided. A new grading function is proposed and used to prove the uniqueness of the first-order normal forms of generalized Hopf singularities. Recursive formulas for computation of coefficients of unique normal forms of generalized Hopf singularities are also presented.


1958 ◽  
Vol 1 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Hans Zassenhaus

Under the assumptions of case of theorem 1 we derive from (3.32) the matrix equationso that there corresponds the matrix B to the bilinear form4.1on the linear space4.2and fP,μ, is symmetric if ɛ = (-1)μ+1, anti-symmetric if ɛ = (-1)μ.The last statement remains true in the case a) if P is symmetric irreducible because in that case fP,μ is 0.


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


1979 ◽  
Vol 31 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Z. Ditzian

The Szász and Baskakov approximation operators are given by1.11.2respectively. For continuous functions on [0, ∞) with exponential growth (i.e. ‖ƒ‖A ≡ supx\ƒ(x)e–Ax\ < M) the modulus of continuity is defined by1.3where ƒ ∈ Lip* (∝, A) for some 0 < ∝ ≦ 2 if w2(ƒ, δ, A) ≦ Mδ∝ for all δ < 1. We shall find a necessary and sufficient condition on the rate of convergence of An(ƒ, x) (representing Sn(ƒ, x) or Vn(ƒ, x)) to ƒ(x) for ƒ(x) ∈ Lip* (∝, A). In a recent paper of M. Becker [1] such conditions were found for functions of polynomial growth (where (1 + \x\N)−1 replaced e–Ax in the above). M. Becker explained the difficulties in treating functions of exponential growth.


1978 ◽  
Vol 26 (1) ◽  
pp. 31-45 ◽  
Author(s):  
J. H. Loxton ◽  
A. J. van der Poorten

AbstractWe consider algebraic independence properties of series such as We show that the functions fr(z) are algebraically independent over the rational functions Further, if αrs (r = 2, 3, 4, hellip; s = 1, 2, 3, hellip) are algebraic numbers with 0 < |αrs|, we obtain an explicit necessary and sufficient condition for the algebraic independence of the numbers fr(αrs) over the rationals.


2019 ◽  
Vol 84 (3) ◽  
pp. 987-1006
Author(s):  
LÉO JIMENEZ

AbstractIn a stable theory, a stationary type $q \in S\left( A \right)$ internal to a family of partial types ${\cal P}$ over A gives rise to a type-definable group, called its binding group. This group is isomorphic to the group $Aut\left( {q/{\cal P},A} \right)$ of permutations of the set of realizations of q, induced by automorphisms of the monster model, fixing ${\cal P}\,\mathop \cup \nolimits \,A$ pointwise. In this article, we investigate families of internal types varying uniformly, what we will call relative internality. We prove that the binding groups also vary uniformly, and are the isotropy groups of a natural type-definable groupoid (and even more). We then investigate how properties of this groupoid are related to properties of the type. In particular, we obtain internality criteria for certain 2-analysable types, and a sufficient condition for a type to preserve internality.


Sign in / Sign up

Export Citation Format

Share Document