scholarly journals Analytic and geometric properties of dislocation singularities

2019 ◽  
Vol 150 (4) ◽  
pp. 1609-1651 ◽  
Author(s):  
Riccardo Scala ◽  
Nicolas Van Goethem

AbstractThis paper deals with the analysis of the singularities arising from the solutions of the problem ${-}\,{\rm Curl\ } F=\mu $, where F is a 3 × 3 matrix-valued Lp-function ($1\les p<2$) and μ a 3 × 3 matrix-valued Radon measure concentrated in a closed loop in Ω ⊂ ℝ3, or in a network of such loops (as, for instance, dislocation clusters as observed in single crystals). In particular, we study the topological nature of such dislocation singularities. It is shown that $F=\nabla u$, the absolutely continuous part of the distributional gradient Du of a vector-valued function u of special bounded variation. Furthermore, u can also be seen as a multi-valued field, that is, can be redefined with values in the three-dimensional flat torus 𝕋3 and hence is Sobolev-regular away from the singular loops. We then analyse the graphs of such maps represented as currents in Ω × 𝕋3 and show that their boundaries can be written in term of the measure μ. Readapting some well-known results for Cartesian currents, we recover closure and compactness properties of the class of maps with bounded curl concentrated on dislocation networks. In the spirit of previous work, we finally give some examples of variational problems where such results provide existence of solutions.

2012 ◽  
Vol 153 (1) ◽  
pp. 147-166 ◽  
Author(s):  
YOUNESS LAMZOURI

AbstractLet q ≥ 3, 2 ≤ r ≤ φ(q) and a1, . . ., ar be distinct residue classes modulo q that are relatively prime to q. Assuming the Generalized Riemann Hypothesis (GRH) and the Linear Independence Hypothesis (LI), M. Rubinstein and P. Sarnak [11] showed that the vector-valued function Eq;a1, . . ., ar(x) = (E(x;q,a1), . . ., E(x;q,ar)), where $E(x;q,a)= ({\log x}/{\sqrt{x}})(\phi(q)\pi(x;q,a)-\pi(x))$, has a limiting distribution μq;a1, . . ., ar which is absolutely continuous on $\mathbb{R}^r$. Furthermore, they proved that for r fixed, μq;a1, . . ., ar tends to a multidimensional Gaussian as q → ∞. In the present paper, we determine the exact rate of this convergence, and investigate the asymptotic behavior of the large deviations of μq;a1, . . ., ar.


Author(s):  
P. I. Plotnikov ◽  
J. F. Toland

This paper outlines a mathematical approach to steady periodic waves which propagate with constant velocity and without change of form on the surface of a three-dimensional expanse of fluid which is at rest at infinite depth and moving irrotationally under gravity, bounded above by a frictionless elastic sheet. The elastic sheet is supposed to have gravitational potential energy, bending energy proportional to the square integral of its mean curvature (its Willmore functional), and stretching energy determined by the position of its particles relative to a reference configuration. The equations and boundary conditions governing the wave shape are derived by formulating the problem, in the language of geometry of surfaces, as one for critical points of a natural Lagrangian, and a proof of the existence of solutions is sketched. This article is part of the theme issue ‘Modelling of sea-ice phenomena’.


2000 ◽  
Vol 61 (2) ◽  
pp. 201-206 ◽  
Author(s):  
K. R. Kazmi ◽  
S. Khan

We establish an existence theorem for weak saddle points of a vector valued function by making use of a vector variational inequality and convex functions.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


Author(s):  
Cristiana De Filippis ◽  
Giuseppe Mingione

AbstractWe provide a general approach to Lipschitz regularity of solutions for a large class of vector-valued, nonautonomous variational problems exhibiting nonuniform ellipticity. The functionals considered here range from those with unbalanced polynomial growth conditions to those with fast, exponential type growth. The results obtained are sharp with respect to all the data considered and also yield new, optimal regularity criteria in the classical uniformly elliptic case. We give a classification of different types of nonuniform ellipticity, accordingly identifying suitable conditions to get regularity theorems.


Sign in / Sign up

Export Citation Format

Share Document