scholarly journals Existence of solutions for a vector saddle point problem

2000 ◽  
Vol 61 (2) ◽  
pp. 201-206 ◽  
Author(s):  
K. R. Kazmi ◽  
S. Khan

We establish an existence theorem for weak saddle points of a vector valued function by making use of a vector variational inequality and convex functions.

Author(s):  
A. Ben-Israel ◽  
B. Mond

AbstractRecently it was shown that many results in Mathematical Programming involving convex functions actually hold for a wider class of functions, called invex. Here a simple characterization of invexity is given for both constrained and unconstrained problems. The relationship between invexity and other generalizations of convexity is illustrated. Finally, it is shown that invexity can be substituted for convexity in the saddle point problem and in the Slater constraint qualification.


2019 ◽  
Vol 150 (4) ◽  
pp. 1609-1651 ◽  
Author(s):  
Riccardo Scala ◽  
Nicolas Van Goethem

AbstractThis paper deals with the analysis of the singularities arising from the solutions of the problem ${-}\,{\rm Curl\ } F=\mu $, where F is a 3 × 3 matrix-valued Lp-function ($1\les p<2$) and μ a 3 × 3 matrix-valued Radon measure concentrated in a closed loop in Ω ⊂ ℝ3, or in a network of such loops (as, for instance, dislocation clusters as observed in single crystals). In particular, we study the topological nature of such dislocation singularities. It is shown that $F=\nabla u$, the absolutely continuous part of the distributional gradient Du of a vector-valued function u of special bounded variation. Furthermore, u can also be seen as a multi-valued field, that is, can be redefined with values in the three-dimensional flat torus 𝕋3 and hence is Sobolev-regular away from the singular loops. We then analyse the graphs of such maps represented as currents in Ω × 𝕋3 and show that their boundaries can be written in term of the measure μ. Readapting some well-known results for Cartesian currents, we recover closure and compactness properties of the class of maps with bounded curl concentrated on dislocation networks. In the spirit of previous work, we finally give some examples of variational problems where such results provide existence of solutions.


2013 ◽  
Vol 16 (1) ◽  
pp. 1-16
Author(s):  
Michael Andres ◽  
Matthias Maischak ◽  
Ernst P. Stephan

AbstractA variational inequality formulation is derived for some frictional contact problems from linear elasticity. The formulation exhibits a two-fold saddle point structure and is of dual-dual type, involving the stress tensor as primary unknown as well as the friction force on the contact surface by means of a Lagrange multiplier. The approach starts with the minimization of the conjugate elastic potential. Applying Fenchel's duality theory to this dual minimization problem, the connection to the primal minimization problem and a dual saddle point problem is achieved. The saddle point problem possesses the displacement field and the rotation tensor as further unknowns. Introducing the friction force yields the dual-dual saddle point problem. The equivalence and unique solvability of both problems is shown with the help of the variational inequality formulations corresponding to the saddle point formulations, respectively.


Author(s):  
Jiawang Nie ◽  
Zi Yang ◽  
Guangming Zhou

AbstractThis paper studies the saddle point problem of polynomials. We give an algorithm for computing saddle points. It is based on solving Lasserre’s hierarchy of semidefinite relaxations. Under some genericity assumptions on defining polynomials, we show that: (i) if there exists a saddle point, our algorithm can get one by solving a finite hierarchy of Lasserre-type semidefinite relaxations; (ii) if there is no saddle point, our algorithm can detect its nonexistence.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ritukesh Bharali ◽  
Fredrik Larsson ◽  
Ralf Jänicke

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


Author(s):  
Antoine Laurain ◽  
Houcine Meftahi

AbstractIn this paper we consider the inverse problem of simultaneously reconstructing the interface where the jump of the conductivity occurs and the Robin parameter for a transmission problem with piecewise constant conductivity and Robin-type transmission conditions on the interface. We propose a reconstruction method based on a shape optimization approach and compare the results obtained using two different types of shape functionals. The reformulation of the shape optimization problem as a suitable saddle point problem allows us to obtain the optimality conditions by using differentiability properties of the min-sup combined with a function space parameterization technique. The reconstruction is then performed by means of an iterative algorithm based on a conjugate shape gradient method combined with a level set approach. To conclude we give and discuss several numerical examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Tao Chen

A new existence result ofε-vector equilibrium problem is first obtained. Then, by using the existence theorem ofε-vector equilibrium problem, a weaklyε-cone saddle point theorem is also obtained for vector-valued mappings.


Sign in / Sign up

Export Citation Format

Share Document