wave shape
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 27 (5) ◽  
pp. 1132-1138
Author(s):  
Gum-Ju Sung ◽  
Yong-Mi Jin

The purpose of this study is to provide possibility and scalability for the creation of an artistic and original modern up-style in subsequent studies by applying the mushroom form. The four works were created by applying various kinds of mushroom images by combining the components of up-style design, the principles of design, and up-style techniques. As a result, the first piece was produced with a three-dimensional texture by raising the hair little by little. Art 2 uses black hair to create a distinct line of shape, creating a splendid refinement. Art 3 shows classic beauty and elegance by braiding to express the mesh-shaped characteristics of mushrooms. The wave shape of mushrooms in Figure 4 shows richness and rhythm through wave continuity and movement. The conclusion is that the design can be produced and applied with harmony and balance by applying up-style techniques by utilizing the characteristics of various kinds of mushrooms. And I could see that the up-style design has a texture and eye-catching effect depending on the color. In future research, we look forward to the possibility of satisfying customers' needs and expectations by studying infinite designs that can express the elegance and beauty of up-style.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 347
Author(s):  
Sergey Kuznetsov ◽  
Yana Saprykina

The nonlinear transformation of waves in the coastal zone over the sloping bottom is considered on the base of field, laboratory, and numerical experiments by methods of spectral and wavelet analyses. The nonlinearity leads to substantial changes of wave shape during its propagation to the shore. Since these changes occur rapidly, the wave movement is non-periodical in space, and the application of linear theory concepts of wavenumber or wavelength results in some paradoxical phenomena. When analyzing the spatial evolution of waves in the frequency domain, the effect of periodic energy exchange and changes in the phase shift between the first and second wave harmonics are observed. When considering the wavenumber domain, the free and bound waves of both the first and second harmonics with constant in space amplitudes appear, and all spatial fluctuations of the wave parameters are caused by interference of these four harmonics. Practically important consequences such as the wave energy spatial fluctuations and of anomalous dispersion of the second harmonic are shown and discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akbar Nazari-Golshan ◽  
Vahid Fallahi

Abstract Propagation of dust ion-acoustic (DIA) Gardner wave in a dusty electron–positron–ion (e–p–i) plasma is investigated. This plasma consists of q-distributed electrons and positrons, warm ions, and dust grains. The effects of the electron nonextensivity, positron nonextensivity, and fractional parameter on the properties of DIA Gardner wave are investigated. Space fractional Gardner (SFG) equation is derived using the semi inverse technique. An efficient modified G′/G-expansion method is presented to solve the SFG equation. It is found that the amplitude of the DIA Gardner wave increases with an increase in space fractional parameter β $\left(\beta \right)$ and spatial parameter ζ $\left(\zeta \right)$ . On other hands, the DIA Gardner wave shape can be modulated using the space fractional parameter β $\left(\beta \right)$ . Our results may help understand the astrophysical environments such as star magnetospheres, solar flares, and galactic nuclei.


Author(s):  
Rita R. Patel ◽  
Sten Ternström

Purpose The purpose of this study is to identify the extent to which various measurements of contacting parameters differ between children and adults during habitual range and overlap vocal frequency/intensity, using voice map–based assessment of noninvasive electroglottography (EGG). Method EGG voice maps were analyzed from 26 adults (22–45 years) and 22 children (4–8 years) during connected speech and vowel /a/ over the habitual range and the overlap vocal frequency/intensity from the voice range profile task on the vowel /a/. Mean and standard deviations of contact quotient by integration, normalized contacting speed, quotient of speed by integration, and cycle-rate sample entropy were obtained. Group differences were evaluated using the linear mixed model analysis for the habitual range connected speech and the vowel, whereas analysis of covariance was conducted for the overlap vocal frequency/intensity from the voice range profile task. Presence of a “knee” on the EGG wave shape was determined by visual inspection of the presence of convexity along the decontacting slope of the EGG pulse and the presence of the second derivative zero-crossing. Results The contact quotient by integration, normalized contacting speed, quotient of speed by integration, and cycle-rate sample entropy were significantly different in children compared to (a) adult males for habitual range and (b) adult males and adult females for the overlap vocal frequency/intensity. None of the children had a “knee” on the decontacting slope of the EGG slope. Conclusion EGG parameters of contact quotient by integration, normalized contacting speed, quotient of speed by integration, cycle-rate sample entropy, and absence of a “knee” on the decontacting slope characterize the wave shape differences between children and adults, whereas the normalized contacting speed, quotient of speed by integration, cycle-rate sample entropy, and presence of a “knee” on the downward pulse slope characterize the wave shape differences between adult males and adult females. Supplemental Material https://doi.org/10.23641/asha.15057345


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Toosi ◽  
Mohammad Ali Akhaee ◽  
Mohammad-Reza A. Dehaqani

AbstractDeveloping high-density electrodes for recording large ensembles of neurons provides a unique opportunity for understanding the mechanism of the neuronal circuits. Nevertheless, the change of brain tissue around chronically implanted neural electrodes usually causes spike wave-shape distortion and raises the crucial issue of spike sorting with an unstable structure. The automatic spike sorting algorithms have been developed to extract spikes from these big extracellular data. However, due to the spike wave-shape instability, there have been a lack of robust spike detection procedures and clustering to overcome the spike loss problem. Here, we develop an automatic spike sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions to address these distortions and instabilities. The adaptive detection procedure applies to the detected spikes, consists of multi-point alignment and statistical filtering for removing mistakenly detected spikes. The detected spikes are clustered based on the mixture of skew-t distributions to deal with non-symmetrical clusters and spike loss problems. The proposed algorithm improves the performance of the spike sorting in both terms of precision and recall, over a broad range of signal-to-noise ratios. Furthermore, the proposed algorithm has been validated on different datasets and demonstrates a general solution to precise spike sorting, in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document