On supercritical problems involving the Laplace operator

Author(s):  
Rodrigo Clemente ◽  
João Marcos do Ó ◽  
Pedro Ubilla

Abstract We discuss the existence, nonexistence and multiplicity of solutions for a class of elliptic equations in the unit ball with zero Dirichlet boundary conditions involving nonlinearities with supercritical growth. By using Pohozaev type identity we prove a nonexistence result for a class of supercritical problems with variable exponent which allow us to complement the analysis developed in (Calc. Var. (2016) 55:83). Moreover, we establish existence results of positive solutions for semilinear elliptic equations involving nonlinearities which are subcritical at infinity just in a part of the domain, and can be supercritical in a suitable sense.

2016 ◽  
Vol 18 (06) ◽  
pp. 1550084 ◽  
Author(s):  
Annamaria Canino ◽  
Berardino Sciunzi

Given [Formula: see text] a bounded open subset of [Formula: see text], we consider non-negative solutions to the singular semilinear elliptic equation [Formula: see text] in [Formula: see text], under zero Dirichlet boundary conditions. For [Formula: see text] and [Formula: see text], we prove that the solution is unique.


1998 ◽  
Vol 21 (2) ◽  
pp. 321-330 ◽  
Author(s):  
J. V. Goncalves ◽  
S. Meira

We use Minimax Methods and explore compact embedddings in the context of Orlicz and Orlicz-Sobolev spaces to get existence of weak solutions on a class of semilinear elliptic equations with nonlinearities near critical growth. We consider both biharmonic equations with Navier boundary conditions and Laplacian equations with Dirichlet boundary conditions.


2003 ◽  
Vol 3 (1) ◽  
pp. 1-23 ◽  
Author(s):  
A. Salvatore

AbstractWe look for solutions of a nonlinear perturbed Schrödinger equation with nonhomogeneous Dirichlet boundary conditions. By using a perturbation method introduced by Bolle, we prove the existence of multiple solutions in spite of the lack of the symmetry of the problem.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Markus Kunze ◽  
Rafael Ortega

AbstractWe consider semilinear elliptic problems of the form Δu + g(u) = f(x) with Neumann boundary conditions or Δu+λ1u+g(u) = f(x) with Dirichlet boundary conditions, and we derive conditions on g and f under which an upper bound on the number of solutions can be obtained.


2019 ◽  
Vol 149 (5) ◽  
pp. 1163-1173
Author(s):  
Vladimir Bobkov ◽  
Sergey Kolonitskii

AbstractIn this note, we prove the Payne-type conjecture about the behaviour of the nodal set of least energy sign-changing solutions for the equation $-\Delta _p u = f(u)$ in bounded Steiner symmetric domains $ \Omega \subset {{\open R}^N} $ under the zero Dirichlet boundary conditions. The nonlinearity f is assumed to be either superlinear or resonant. In the latter case, least energy sign-changing solutions are second eigenfunctions of the zero Dirichlet p-Laplacian in Ω. We show that the nodal set of any least energy sign-changing solution intersects the boundary of Ω. The proof is based on a moving polarization argument.


2010 ◽  
Vol 10 (3) ◽  
Author(s):  
Zakaria Bouchech ◽  
Hichem Chtioui

AbstractIn this paper we consider the following nonlinear elliptic equation with Dirichlet boundary conditions: -Δu = K(x)u


2020 ◽  
Vol 43 (6) ◽  
pp. 4089-4106
Author(s):  
Rafał Kamocki

Abstract In this paper, we investigate a nonlinear differential inclusion with Dirichlet boundary conditions containing a weak Laplace operator of fractional orders (defined via the spectral decomposition of the Laplace operator $$-{\varDelta }$$ - Δ under Dirichlet boundary conditions). Using variational methods, we characterize solutions of such a problem. Our approach is based on tools from convex analysis (properties of a Legendre–Fenchel transform).


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Wei Dong ◽  
Jiafa Xu ◽  
Xiaoyan Zhang

By the virtue of variational method and critical point theory, we give some existence results of weak solutions for ap-Laplacian impulsive differential equation with Dirichlet boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document