Multiple Solutions for Perturbed Elliptic Equations in Unbounded Domains

2003 ◽  
Vol 3 (1) ◽  
pp. 1-23 ◽  
Author(s):  
A. Salvatore

AbstractWe look for solutions of a nonlinear perturbed Schrödinger equation with nonhomogeneous Dirichlet boundary conditions. By using a perturbation method introduced by Bolle, we prove the existence of multiple solutions in spite of the lack of the symmetry of the problem.

2013 ◽  
Vol 13 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Fabrice Planchon

AbstractWe prove bilinear estimates for the Schrödinger equation on 3D domains, with Dirichlet boundary conditions. On non-trapping domains, they match the ${ \mathbb{R} }^{3} $ case, while on bounded domains they match the generic boundaryless manifold case. We obtain, as an application, global well-posedness for the defocusing cubic NLS for data in ${ H}_{0}^{s} (\Omega )$, $1\lt s\leq 3$, with $\Omega $ any bounded domain with smooth boundary.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yuhua Long ◽  
Shaohong Wang ◽  
Jiali Chen

Abstract In the present paper, a class of fourth-order nonlinear difference equations with Dirichlet boundary conditions or periodic boundary conditions are considered. Based on the invariant sets of descending flow in combination with the mountain pass lemma, we establish a series of sufficient conditions on the existence of multiple solutions for these boundary value problems. In addition, some examples are provided to demonstrate the applicability of our results.


Author(s):  
Mónica Clapp ◽  
Manuel Del Pino ◽  
Monica Musso

We consider the equation−Δu = |u|4/(N−2)u + εf(x) under zero Dirichlet boundary conditions in a bounded domain Ω in RN exhibiting certain symmetries, with f ≥ 0, f ≠ 0. In particular, we find that the number of sign-changing solutions goes to infinity for radially symmetric f, as ε → 0 if Ω is a ball. The same is true for the number of negative solutions if Ω is an annulus and the support of f is compact in Ω.


2019 ◽  
Vol 149 (5) ◽  
pp. 1163-1173
Author(s):  
Vladimir Bobkov ◽  
Sergey Kolonitskii

AbstractIn this note, we prove the Payne-type conjecture about the behaviour of the nodal set of least energy sign-changing solutions for the equation $-\Delta _p u = f(u)$ in bounded Steiner symmetric domains $ \Omega \subset {{\open R}^N} $ under the zero Dirichlet boundary conditions. The nonlinearity f is assumed to be either superlinear or resonant. In the latter case, least energy sign-changing solutions are second eigenfunctions of the zero Dirichlet p-Laplacian in Ω. We show that the nodal set of any least energy sign-changing solution intersects the boundary of Ω. The proof is based on a moving polarization argument.


2014 ◽  
Vol 3 (S1) ◽  
pp. s89-s98 ◽  
Author(s):  
Massimiliano Ferrara ◽  
Shapour Heidarkhani ◽  
Pasquale F. Pizzimenti

AbstractIn this paper we are interested to ensure the existence of multiple nontrivial solutions for some classes of problems under Dirichlet boundary conditions with impulsive effects. More precisely, by using a suitable analytical setting, the existence of at least three solutions is proved exploiting a recent three-critical points result for smooth functionals defined in a reflexive Banach space. Our approach generalizes some well-known results in the classical framework.


Author(s):  
Elvise Berchio ◽  
Alessio Falocchi

AbstractIt is well known that for higher order elliptic equations, the positivity preserving property (PPP) may fail. In striking contrast to what happens under Dirichlet boundary conditions, we prove that the PPP holds for the biharmonic operator on rectangular domains under partially hinged boundary conditions, i.e., nonnegative loads yield positive solutions. The result follows by fine estimates of the Fourier expansion of the corresponding Green function.


Sign in / Sign up

Export Citation Format

Share Document